Skip to content
Snippets Groups Projects
Commit 72cabc77 authored by Lennart Klebl's avatar Lennart Klebl
Browse files

beispieldokument, URLs in latex.tex

parent 54688c25
No related branches found
No related tags found
No related merge requests found
...@@ -40,21 +40,30 @@ Na klar. ...@@ -40,21 +40,30 @@ Na klar.
Im vorigen Unterabschnitt haben wir bemerkt, dass wir die Summe auffassen Im vorigen Unterabschnitt haben wir bemerkt, dass wir die Summe auffassen
können als einen Grenzwert der Zetafunktion. können als einen Grenzwert der Zetafunktion.
Epilog Epilog -- Ein paar Programmiertipps von Rob Pike
Dieser Teil soll nachher nicht im Inhaltsverzeichnis auftauchen, und Most programs are too complicated - that is, more complex than they
erhält damit auch keine Nummer. \\ need to be to solve their problems efficiently. Why? Mostly
Außerdem: it's because of bad design, but I will skip that issue here because
it's a big one. But programs are often complicated at the
· Strukturierte Dokumente sind einfach mit \LaTeX. microscopic level, and that is something I can address here.
· Makros machen einem das Leben leicht. You can't tell where a program is going to spend its
time. Bottlenecks occur in surprising places, so don't try to second
· Formeln -- und auch der ganze Rest -- sehen (noch nicht) toll aus. guess and put in a speed hack until you've proven that's where the
bottleneck is.
· Referenzen auf alles mögliche, also (Unter)abschnitte,
Gleichungen, Abbildungen, Tabellen, ... sind automatisch richtig. Measure. Don't tune for speed until you've measured,
and even then don't unless one part of the code overwhelms the rest.
· Eigentlich ist das alles gar nicht so schwierig.
Fancy algorithms are slow when n is small, and n
is usually small. Fancy algorithms have big constants. Until you know that
n is frequently going to be big, don't get fancy. (Even if n does get
big, use 2. first.) For example, binary trees are always faster
than splay trees for workaday problems.
Fancy algorithms are buggier than simple ones, and
they're much harder to implement. Use simple algorithms as well as simple
data structures.
\end{document} \end{document}
...@@ -42,21 +42,30 @@ Na klar. ...@@ -42,21 +42,30 @@ Na klar.
Im vorigen Unterabschnitt haben wir bemerkt, dass wir die Summe auffassen Im vorigen Unterabschnitt haben wir bemerkt, dass wir die Summe auffassen
können als einen Grenzwert der Zetafunktion. können als einen Grenzwert der Zetafunktion.
Epilog Epilog -- Ein paar Programmiertipps von Rob Pike
Dieser Teil soll nachher \textcolor{red}{nicht} im Inhaltsverzeichnis auftauchen, und Most programs are too \textbf{complicated} - that is, more complex than they
erhält damit auch keine Nummer. \\ \textit{need} to be to solve their problems \textit{efficiently}. Why? Mostly
Außerdem: it's because of \textbf{bad design}, but I will skip that issue here because
it's a \textbf{\textcolor{red}{big}} one. But programs are often complicated at the
· Strukturierte Dokumente sind einfach mit \LaTeX. microscopic level, and that is something I can address here.
· Makros machen einem das Leben leicht. \textcolor{red}{You can't tell where a program is going to spend its
time.} Bottlenecks occur in surprising places, so don't try to second
· Formeln -- und auch der ganze Rest -- sehen (noch nicht) toll aus. guess and put in a speed hack until you've proven that's where the
bottleneck is.
· Referenzen auf alles mögliche, also (Unter)abschnitte,
Gleichungen, Abbildungen, Tabellen, ... sind automatisch richtig. \textcolor{red}{Measure.} Don't tune for speed until you've measured,
and even then don't unless one part of the code overwhelms the rest.
· Eigentlich ist das alles gar nicht so schwierig.
\textcolor{red}{Fancy algorithms are slow when n is small}, and n
is usually small. Fancy algorithms have big constants. Until you know that
n is frequently going to be big, don't get fancy. (Even if n does get
big, use 2. first.) For example, binary trees are always faster
than splay trees for workaday problems.
\textcolor{red}{Fancy algorithms are buggier} than simple ones, and
they're much harder to implement. Use simple algorithms as well as simple
data structures.
\end{document} \end{document}
...@@ -44,21 +44,29 @@ Ergebnis führt. ...@@ -44,21 +44,29 @@ Ergebnis führt.
Im vorigen Unterabschnitt haben wir bemerkt, dass wir die Summe auffassen Im vorigen Unterabschnitt haben wir bemerkt, dass wir die Summe auffassen
können als einen Grenzwert der Zetafunktion. können als einen Grenzwert der Zetafunktion.
\section*{Epilog} \section*{Epilog -- Ein paar Programmiertipps von Rob Pike}
Most programs are too \textbf{complicated} - that is, more complex than they
Dieser Teil soll nachher \textcolor{red}{nicht} im Inhaltsverzeichnis auftauchen, und \textit{need} to be to solve their problems \textit{efficiently}. Why? Mostly
erhält damit auch keine Nummer. \\ it's because of \textbf{bad design}, but I will skip that issue here because
Außerdem: it's a \textbf{\textcolor{red}{big}} one. But programs are often complicated at the
microscopic level, and that is something I can address here.
· Strukturierte Dokumente sind einfach mit \LaTeX.
\textcolor{red}{You can't tell where a program is going to spend its
· Makros machen einem das Leben leicht. time.} Bottlenecks occur in surprising places, so don't try to second
guess and put in a speed hack until you've proven that's where the
· Formeln -- und auch der ganze Rest -- sehen (noch nicht) toll aus. bottleneck is.
· Referenzen auf alles mögliche, also (Unter)abschnitte, \textcolor{red}{Measure.} Don't tune for speed until you've measured,
Gleichungen, Abbildungen, Tabellen, ... sind automatisch richtig. and even then don't unless one part of the code overwhelms the rest.
· Eigentlich ist das alles gar nicht so schwierig. \textcolor{red}{Fancy algorithms are slow when n is small}, and n
is usually small. Fancy algorithms have big constants. Until you know that
n is frequently going to be big, don't get fancy. (Even if n does get
big, use 2. first.) For example, binary trees are always faster
than splay trees for workaday problems.
\textcolor{red}{Fancy algorithms are buggier} than simple ones, and
they're much harder to implement. Use simple algorithms as well as simple
data structures.
\end{document} \end{document}
...@@ -46,19 +46,27 @@ Ergebnis führt. ...@@ -46,19 +46,27 @@ Ergebnis führt.
Im vorigen Unterabschnitt haben wir bemerkt, dass wir die Summe auffassen Im vorigen Unterabschnitt haben wir bemerkt, dass wir die Summe auffassen
können als einen Grenzwert der Zetafunktion. können als einen Grenzwert der Zetafunktion.
\section*{Epilog} \section*{Epilog -- Ein paar Programmiertipps von Rob Pike}
Most programs are too \textbf{complicated} - that is, more complex than they
Dieser Teil soll nachher \textcolor{red}{nicht} im Inhaltsverzeichnis auftauchen, und \textit{need} to be to solve their problems \textit{efficiently}. Why? Mostly
erhält damit auch keine Nummer. \\ it's because of \textbf{bad design}, but I will skip that issue here because
Außerdem: it's a \textbf{\textcolor{red}{big}} one. But programs are often complicated at the
microscopic level, and that is something I can address here.
\begin{itemize} \begin{enumerate}
\item Strukturierte Dokumente sind einfach mit \LaTeX. \item \textcolor{red}{You can't tell where a program is going to spend its
\item Makros machen einem das Leben leicht. time.} Bottlenecks occur in surprising places, so don't try to second
\item Formeln -- und auch der ganze Rest -- sehen (noch nicht) toll aus. guess and put in a speed hack until you've proven that's where the
\item Referenzen auf alles mögliche, also (Unter)abschnitte, bottleneck is.
Gleichungen, Abbildungen, Tabellen, ... sind automatisch richtig. \item \textcolor{red}{Measure.} Don't tune for speed until you've measured,
\item Eigentlich ist das alles gar nicht so schwierig. and even then don't unless one part of the code overwhelms the rest.
\end{itemize} \item \textcolor{red}{Fancy algorithms are slow when n is small}, and n
is usually small. Fancy algorithms have big constants. Until you know that
n is frequently going to be big, don't get fancy. (Even if n does get
big, use 2. first.) For example, binary trees are always faster
than splay trees for workaday problems.
\item \textcolor{red}{Fancy algorithms are buggier} than simple ones, and
they're much harder to implement. Use simple algorithms as well as simple
data structures.
\end{enumerate}
\end{document} \end{document}
...@@ -49,19 +49,27 @@ Ergebnis führt. ...@@ -49,19 +49,27 @@ Ergebnis führt.
Im vorigen Unterabschnitt haben wir bemerkt, dass wir die Summe auffassen Im vorigen Unterabschnitt haben wir bemerkt, dass wir die Summe auffassen
können als einen Grenzwert der Zetafunktion, $\zeta(-1) = -1/12$. können als einen Grenzwert der Zetafunktion, $\zeta(-1) = -1/12$.
\section*{Epilog} \section*{Epilog -- Ein paar Programmiertipps von Rob Pike}
Most programs are too \textbf{complicated} - that is, more complex than they
Dieser Teil soll nachher \textcolor{red}{nicht} im Inhaltsverzeichnis auftauchen, und \textit{need} to be to solve their problems \textit{efficiently}. Why? Mostly
erhält damit auch keine Nummer. \\ it's because of \textbf{bad design}, but I will skip that issue here because
Außerdem: it's a \textbf{\textcolor{red}{big}} one. But programs are often complicated at the
microscopic level, and that is something I can address here.
\begin{itemize} \begin{enumerate}
\item Strukturierte Dokumente sind einfach mit \LaTeX. \item \textcolor{red}{You can't tell where a program is going to spend its
\item Makros machen einem das Leben leicht. time.} Bottlenecks occur in surprising places, so don't try to second
\item Formeln -- und auch der ganze Rest -- sehen (noch nicht) toll aus. guess and put in a speed hack until you've proven that's where the
\item Referenzen auf alles mögliche, also (Unter)$^n$abschnitte, bottleneck is.
Gleichungen, Abbildungen, Tabellen, ... sind automatisch richtig. \item \textcolor{red}{Measure.} Don't tune for speed until you've measured,
\item Eigentlich ist das alles gar nicht so schwierig. and even then don't unless one part of the code overwhelms the rest.
\end{itemize} \item \textcolor{red}{Fancy algorithms are slow when $n$ is small}, and $n$
is usually small. Fancy algorithms have big constants. Until you know that
$n$ is frequently going to be big, don't get fancy. (Even if $n$ does get
big, use 2. first.) For example, binary trees are always faster
than splay trees for workaday problems.
\item \textcolor{red}{Fancy algorithms are buggier} than simple ones, and
they're much harder to implement. Use simple algorithms as well as simple
data structures.
\end{enumerate}
\end{document} \end{document}
...@@ -68,29 +68,30 @@ Tabelle 1: Wert der $n$-ten Partialsumme ...@@ -68,29 +68,30 @@ Tabelle 1: Wert der $n$-ten Partialsumme
\end{tabular} \end{tabular}
\end{center} \end{center}
\section*{Epilog} \section*{Epilog -- Ein paar Programmiertipps von Rob Pike}
Most programs are too \textbf{complicated} - that is, more complex than they
Dieser Teil soll nachher \textcolor{red}{nicht} im Inhaltsverzeichnis auftauchen, und \textit{need} to be to solve their problems \textit{efficiently}. Why? Mostly
erhält damit auch keine Nummer. \\ it's because of \textbf{bad design}, but I will skip that issue here because
Außerdem: it's a \textbf{\textcolor{red}{big}} one. But programs are often complicated at the
microscopic level, and that is something I can address here.
\begin{itemize} \begin{enumerate}
\item Strukturierte Dokumente sind einfach mit \LaTeX. \item \textcolor{red}{You can't tell where a program is going to spend its
\item Makros machen einem das Leben leicht. time.} Bottlenecks occur in surprising places, so don't try to second
\item Formeln -- und auch der ganze Rest -- sehen (noch nicht) toll aus. guess and put in a speed hack until you've proven that's where the
\item Referenzen auf alles mögliche, also (Unter)$^n$abschnitte, bottleneck is.
Gleichungen, Abbildungen, Tabellen, ... sind automatisch richtig. \item \textcolor{red}{Measure.} Don't tune for speed until you've measured,
\item Eigentlich ist das alles gar nicht so schwierig. and even then don't unless one part of the code overwhelms the rest.
\end{itemize} \item \textcolor{red}{Fancy algorithms are slow when $n$ is small}, and $n$
is usually small. Fancy algorithms have big constants. Until you know that
\vfill $n$ is frequently going to be big, don't get fancy. (Even if $n$ does get
% Der Befehl vfill fügt einen vertikalen Abstand ein, der den übrigen Platz big, use 2. first.) For example, binary trees are always faster
% ausfüllt than splay trees for workaday problems.
\item \textcolor{red}{Fancy algorithms are buggier} than simple ones, and
they're much harder to implement. Use simple algorithms as well as simple
data structures.
\end{enumerate}
\begin{center} \begin{center}
\includegraphics[width=0.5\textwidth]{ctanlion.eps} \includegraphics[width=0.5\textwidth]{ctanlion.eps}
\end{center} \end{center}
\vfill
% die beiden Abstände werden gleichmäßig verteilt. Das Bild erscheint also in
% der Mitte.
\end{document} \end{document}
...@@ -69,29 +69,30 @@ können als einen Grenzwert der Zetafunktion, $\zeta(-1) = -1/12$. ...@@ -69,29 +69,30 @@ können als einen Grenzwert der Zetafunktion, $\zeta(-1) = -1/12$.
\end{center} \end{center}
\end{table} \end{table}
\section*{Epilog} \section*{Epilog -- Ein paar Programmiertipps von Rob Pike}
Most programs are too \textbf{complicated} - that is, more complex than they
Dieser Teil soll nachher \textcolor{red}{nicht} im Inhaltsverzeichnis auftauchen, und \textit{need} to be to solve their problems \textit{efficiently}. Why? Mostly
erhält damit auch keine Nummer. \\ it's because of \textbf{bad design}, but I will skip that issue here because
Außerdem: it's a \textbf{\textcolor{red}{big}} one. But programs are often complicated at the
microscopic level, and that is something I can address here.
\begin{itemize} \begin{enumerate}
\item Strukturierte Dokumente sind einfach mit \LaTeX. \item \textcolor{red}{You can't tell where a program is going to spend its
\item Makros machen einem das Leben leicht. time.} Bottlenecks occur in surprising places, so don't try to second
\item Formeln -- und auch der ganze Rest -- sehen (noch nicht) toll aus. guess and put in a speed hack until you've proven that's where the
\item Referenzen auf alles mögliche, also (Unter)$^n$abschnitte, bottleneck is.
Gleichungen, Abbildungen, Tabellen, ... sind automatisch richtig. \item \textcolor{red}{Measure.} Don't tune for speed until you've measured,
\item Eigentlich ist das alles gar nicht so schwierig. and even then don't unless one part of the code overwhelms the rest.
\end{itemize} \item \textcolor{red}{Fancy algorithms are slow when $n$ is small}, and $n$
is usually small. Fancy algorithms have big constants. Until you know that
\vfill $n$ is frequently going to be big, don't get fancy. (Even if $n$ does get
% Der Befehl vfill fügt einen vertikalen Abstand ein, der den übrigen Platz big, use 2. first.) For example, binary trees are always faster
% ausfüllt than splay trees for workaday problems.
\item \textcolor{red}{Fancy algorithms are buggier} than simple ones, and
they're much harder to implement. Use simple algorithms as well as simple
data structures.
\end{enumerate}
\begin{center} \begin{center}
\includegraphics[width=0.5\textwidth]{ctanlion.eps} \includegraphics[width=0.5\textwidth]{ctanlion.eps}
\end{center} \end{center}
\vfill
% die beiden Abstände werden gleichmäßig verteilt. Das Bild erscheint also in
% der Mitte.
\end{document} \end{document}
...@@ -72,29 +72,30 @@ können als einen Grenzwert der Zetafunktion, $\zeta(-1) = -1/12$. ...@@ -72,29 +72,30 @@ können als einen Grenzwert der Zetafunktion, $\zeta(-1) = -1/12$.
\end{center} \end{center}
\end{table} \end{table}
\section*{Epilog} \section*{Epilog -- Ein paar Programmiertipps von Rob Pike}
Most programs are too \textbf{complicated} - that is, more complex than they
Dieser Teil soll nachher \textcolor{red}{nicht} im Inhaltsverzeichnis auftauchen, und \textit{need} to be to solve their problems \textit{efficiently}. Why? Mostly
erhält damit auch keine Nummer. \\ it's because of \textbf{bad design}, but I will skip that issue here because
Außerdem: it's a \textbf{\textcolor{red}{big}} one. But programs are often complicated at the
microscopic level, and that is something I can address here.
\begin{itemize} \begin{enumerate}
\item Strukturierte Dokumente sind einfach mit \LaTeX. \item \textcolor{red}{You can't tell where a program is going to spend its
\item Makros machen einem das Leben leicht. time.} Bottlenecks occur in surprising places, so don't try to second
\item Formeln -- und auch der ganze Rest -- sehen (noch nicht) toll aus. guess and put in a speed hack until you've proven that's where the
\item Referenzen auf alles mögliche, also (Unter)$^n$abschnitte, bottleneck is.
Gleichungen, Abbildungen, Tabellen, ... sind automatisch richtig. \item \label{measure}\textcolor{red}{Measure.} Don't tune for speed until you've measured,
\item Eigentlich ist das alles gar nicht so schwierig. and even then don't unless one part of the code overwhelms the rest.
\end{itemize} \item \textcolor{red}{Fancy algorithms are slow when $n$ is small}, and $n$
is usually small. Fancy algorithms have big constants. Until you know that
\vfill $n$ is frequently going to be big, don't get fancy. (Even if $n$ does get
% Der Befehl vfill fügt einen vertikalen Abstand ein, der den übrigen Platz big, use \ref{measure}. first.) For example, binary trees are always faster
% ausfüllt than splay trees for workaday problems.
\item \textcolor{red}{Fancy algorithms are buggier} than simple ones, and
they're much harder to implement. Use simple algorithms as well as simple
data structures.
\end{enumerate}
\begin{center} \begin{center}
\includegraphics[width=0.5\textwidth]{ctanlion.eps} \includegraphics[width=0.5\textwidth]{ctanlion.eps}
\end{center} \end{center}
\vfill
% die beiden Abstände werden gleichmäßig verteilt. Das Bild erscheint also in
% der Mitte.
\end{document} \end{document}
...@@ -71,24 +71,26 @@ können als einen Grenzwert der Zetafunktion, $\riemann$. ...@@ -71,24 +71,26 @@ können als einen Grenzwert der Zetafunktion, $\riemann$.
\end{table} \end{table}
\section*{Epilog -- Ein paar Programmiertipps von Rob Pike} \section*{Epilog -- Ein paar Programmiertipps von Rob Pike}
Most programs are too complicated - that is, more complex than they need to be Most programs are too \textbf{complicated} - that is, more complex than they
to solve their problems efficiently. Why? Mostly it's because of bad design, \textit{need} to be to solve their problems \textit{efficiently}. Why? Mostly
but I will skip that issue here because it's a big one. But programs are often it's because of \textbf{bad design}, but I will skip that issue here because
complicated at the microscopic level, and that is something I can address here. it's a \textbf{\textcolor{red}{big}} one. But programs are often complicated at the
microscopic level, and that is something I can address here.
\begin{enumerate} \begin{enumerate}
\item You can't tell where a program is going to spend its \item \textcolor{red}{You can't tell where a program is going to spend its
time. Bottlenecks occur in surprising places, so don't try to second time.} Bottlenecks occur in surprising places, so don't try to second
guess and put in a speed hack until you've proven that's where the guess and put in a speed hack until you've proven that's where the
bottleneck is. bottleneck is.
\item Measure. Don't tune for speed until you've measured, and even then don't \item \label{measure}\textcolor{red}{Measure.} Don't tune for speed until you've measured,
unless one part of the code overwhelms the rest. and even then don't unless one part of the code overwhelms the rest.
\item Fancy algorithms are slow when $n$ is small, and $n$ is usually small. \item \textcolor{red}{Fancy algorithms are slow when $n$ is small}, and $n$
Fancy algorithms have big constants. Until you know that $n$ is frequently is usually small. Fancy algorithms have big constants. Until you know that
going to be big, don't get fancy. (Even if $n$ does get big, use Rule 2 $n$ is frequently going to be big, don't get fancy. (Even if $n$ does get
first.) For example, binary trees are always faster than splay trees for big, use \ref{measure}. first.) For example, binary trees are always faster
workaday problems. than splay trees for workaday problems.
\item Fancy algorithms are buggier than simple ones, and they're much harder to \item \textcolor{red}{Fancy algorithms are buggier} than simple ones, and
implement. Use simple algorithms as well as simple data structures. they're much harder to implement. Use simple algorithms as well as simple
data structures.
\end{enumerate} \end{enumerate}
\begin{center} \begin{center}
\includegraphics[width=0.5\textwidth]{ctanlion.eps} \includegraphics[width=0.5\textwidth]{ctanlion.eps}
......
...@@ -666,6 +666,7 @@ ...@@ -666,6 +666,7 @@
\end{tikzpicture} \end{tikzpicture}
\vspace{-6pt} \vspace{-6pt}
\end{center} \end{center}
\structure{URLs:} \highlightRed{\textbackslash url}\verb+{http://fsmpi.eu/latex}+ \\
\structure{Besondere Zeichen} \structure{Besondere Zeichen}
\begin{itemize} \begin{itemize}
\item {\bfseries\color{MidnightBlue}\%, "{}}: \texttt{\textbackslash\%}, \verb+"{}+ \item {\bfseries\color{MidnightBlue}\%, "{}}: \texttt{\textbackslash\%}, \verb+"{}+
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment