diff --git a/Doku/gdb.tex b/Doku/gdb.tex index e11ed0aedc7cb65aee7c99e90e70028fc9a2cdbf..0cc61dfbad6dfde2a20bae054b5a1a038a6a2d8c 100644 --- a/Doku/gdb.tex +++ b/Doku/gdb.tex @@ -1,3 +1,4 @@ \subsection{GNU Debugger} Der GNU Debugger \texttt{gdb} ist ein weiteres Werkzeug zum Debuggen von Programmen. -Eine Anleitung ist unter \texttt{man gdb} zu finden. +Eine kurze Anleitung ist unter \texttt{man gdb} zu finden. +Ein ausführliche Dokumentation gibt es unter \url{https://sourceware.org/gdb/current/onlinedocs/gdb/index.html}. diff --git a/Doku/gnuplot.tex b/Doku/gnuplot.tex index 60a61719455a574145976ae0afde1d8025fd737c..ace893a4cbc58c0c2fa1bb3cb45ba3665409c30b 100644 --- a/Doku/gnuplot.tex +++ b/Doku/gnuplot.tex @@ -1,6 +1,6 @@ \subsection{gnuplot} Gnuplot ist eine skriptbasierte Anwendung zum Plotten von zwei- oder dreidimensionalen Funktionen und Daten, die auch einen interaktiven Kommandozeilenmodus bietet. -Zum Lernen von gnuplot bietet sich \url{http://www.gnuplot.info/docs/tutorial.pdf} an. +Zum Lernen von gnuplot bietet sich \url{http://www.gnuplot.info/docs\_5.4/Gnuplot\_5\_4.pdf} an. Gnuplot kann Graphen in mehreren Modi, z.B. graphisch in einem Fenster, als ASCII-Art in der Kommandozeile, als PDF, SVG und sogar als \LaTeX{}, ausgeben. Aufzurufen im Terminal mit:\\ @@ -18,4 +18,10 @@ plot (x/4)**2, sin(x), 1/x Die Ausgabe sieht ähnlich wie die folgende aus:\\ \input{gnuplot_plot} +Mit den folgenden Anweisungen kann die Graphik auch in \Latex-Code exportiert werden. +\begin{verbatim} +set terminal cairolatex +set output "gnuplot_plot.tex" +\end{verbatim} + \textbf{Achtung:} Gnuplot ist leider keine freie Software im Sinne der FSFE\footnote{Free Software Foundation Europe}, obwohl es GNU im Namen trägt. Im Besonderen enthält seine Lizenz eine Klausel, welche de facto das Verändern und Weitergeben von gnuplot verhindert. Ein größtenteils kompatible, freie Alternative ist \texttt{pyxplot}. diff --git a/Doku/gnuplot_plot.tex b/Doku/gnuplot_plot.tex index 34ea3f078e985eae8237daab263f6cbda7221901..9ef7302e5d65673e65c18373ce539397114fe820 100644 --- a/Doku/gnuplot_plot.tex +++ b/Doku/gnuplot_plot.tex @@ -1,552 +1,128 @@ -% GNUPLOT: LaTeX picture -\setlength{\unitlength}{0.240900pt} -\ifx\plotpoint\undefined\newsavebox{\plotpoint}\fi -\begin{picture}(1500,900)(0,0) -\sbox{\plotpoint}{\rule[-0.200pt]{0.400pt}{0.400pt}}% -\put(130.0,82.0){\rule[-0.200pt]{4.818pt}{0.400pt}} -\put(110,82){\makebox(0,0)[r]{$-2$}} -\put(1419.0,82.0){\rule[-0.200pt]{4.818pt}{0.400pt}} -\put(130.0,169.0){\rule[-0.200pt]{4.818pt}{0.400pt}} -\put(110,169){\makebox(0,0)[r]{$-1.5$}} -\put(1419.0,169.0){\rule[-0.200pt]{4.818pt}{0.400pt}} -\put(130.0,256.0){\rule[-0.200pt]{4.818pt}{0.400pt}} -\put(110,256){\makebox(0,0)[r]{$-1$}} -\put(1419.0,256.0){\rule[-0.200pt]{4.818pt}{0.400pt}} -\put(130.0,342.0){\rule[-0.200pt]{4.818pt}{0.400pt}} -\put(110,342){\makebox(0,0)[r]{$-0.5$}} -\put(1419.0,342.0){\rule[-0.200pt]{4.818pt}{0.400pt}} -\put(130.0,429.0){\rule[-0.200pt]{4.818pt}{0.400pt}} -\put(110,429){\makebox(0,0)[r]{$0$}} -\put(1419.0,429.0){\rule[-0.200pt]{4.818pt}{0.400pt}} -\put(130.0,516.0){\rule[-0.200pt]{4.818pt}{0.400pt}} -\put(110,516){\makebox(0,0)[r]{$0.5$}} -\put(1419.0,516.0){\rule[-0.200pt]{4.818pt}{0.400pt}} -\put(130.0,603.0){\rule[-0.200pt]{4.818pt}{0.400pt}} -\put(110,603){\makebox(0,0)[r]{$1$}} -\put(1419.0,603.0){\rule[-0.200pt]{4.818pt}{0.400pt}} -\put(130.0,689.0){\rule[-0.200pt]{4.818pt}{0.400pt}} -\put(110,689){\makebox(0,0)[r]{$1.5$}} -\put(1419.0,689.0){\rule[-0.200pt]{4.818pt}{0.400pt}} -\put(130.0,776.0){\rule[-0.200pt]{4.818pt}{0.400pt}} -\put(110,776){\makebox(0,0)[r]{$2$}} -\put(1419.0,776.0){\rule[-0.200pt]{4.818pt}{0.400pt}} -\put(130.0,82.0){\rule[-0.200pt]{0.400pt}{4.818pt}} -\put(130,41){\makebox(0,0){$-10$}} -\put(130.0,756.0){\rule[-0.200pt]{0.400pt}{4.818pt}} -\put(457.0,82.0){\rule[-0.200pt]{0.400pt}{4.818pt}} -\put(457,41){\makebox(0,0){$-5$}} -\put(457.0,756.0){\rule[-0.200pt]{0.400pt}{4.818pt}} -\put(785.0,82.0){\rule[-0.200pt]{0.400pt}{4.818pt}} -\put(785,41){\makebox(0,0){$0$}} -\put(785.0,756.0){\rule[-0.200pt]{0.400pt}{4.818pt}} -\put(1112.0,82.0){\rule[-0.200pt]{0.400pt}{4.818pt}} -\put(1112,41){\makebox(0,0){$5$}} -\put(1112.0,756.0){\rule[-0.200pt]{0.400pt}{4.818pt}} -\put(1439.0,82.0){\rule[-0.200pt]{0.400pt}{4.818pt}} -\put(1439,41){\makebox(0,0){$10$}} -\put(1439.0,756.0){\rule[-0.200pt]{0.400pt}{4.818pt}} -\put(130.0,429.0){\rule[-0.200pt]{315.338pt}{0.400pt}} -\put(785.0,82.0){\rule[-0.200pt]{0.400pt}{167.185pt}} -\put(130.0,82.0){\rule[-0.200pt]{0.400pt}{167.185pt}} -\put(130.0,82.0){\rule[-0.200pt]{315.338pt}{0.400pt}} -\put(1439.0,82.0){\rule[-0.200pt]{0.400pt}{167.185pt}} -\put(130.0,776.0){\rule[-0.200pt]{315.338pt}{0.400pt}} -\put(784,838){\makebox(0,0){Some Math Functions}} -\put(1279,735){\makebox(0,0)[r]{(x/4)**2}} -\multiput(414.59,772.74)(0.485,-0.874){11}{\rule{0.117pt}{0.786pt}} -\multiput(413.17,774.37)(7.000,-10.369){2}{\rule{0.400pt}{0.393pt}} -\multiput(421.58,760.52)(0.493,-0.933){23}{\rule{0.119pt}{0.838pt}} -\multiput(420.17,762.26)(13.000,-22.260){2}{\rule{0.400pt}{0.419pt}} -\multiput(434.58,736.65)(0.493,-0.893){23}{\rule{0.119pt}{0.808pt}} -\multiput(433.17,738.32)(13.000,-21.324){2}{\rule{0.400pt}{0.404pt}} -\multiput(447.58,713.98)(0.494,-0.791){25}{\rule{0.119pt}{0.729pt}} -\multiput(446.17,715.49)(14.000,-20.488){2}{\rule{0.400pt}{0.364pt}} -\multiput(461.58,691.77)(0.493,-0.853){23}{\rule{0.119pt}{0.777pt}} -\multiput(460.17,693.39)(13.000,-20.387){2}{\rule{0.400pt}{0.388pt}} -\multiput(474.58,670.03)(0.493,-0.774){23}{\rule{0.119pt}{0.715pt}} -\multiput(473.17,671.52)(13.000,-18.515){2}{\rule{0.400pt}{0.358pt}} -\multiput(487.58,650.16)(0.493,-0.734){23}{\rule{0.119pt}{0.685pt}} -\multiput(486.17,651.58)(13.000,-17.579){2}{\rule{0.400pt}{0.342pt}} -\multiput(500.58,631.16)(0.493,-0.734){23}{\rule{0.119pt}{0.685pt}} -\multiput(499.17,632.58)(13.000,-17.579){2}{\rule{0.400pt}{0.342pt}} -\multiput(513.58,612.45)(0.494,-0.644){25}{\rule{0.119pt}{0.614pt}} -\multiput(512.17,613.73)(14.000,-16.725){2}{\rule{0.400pt}{0.307pt}} -\multiput(527.58,594.41)(0.493,-0.655){23}{\rule{0.119pt}{0.623pt}} -\multiput(526.17,595.71)(13.000,-15.707){2}{\rule{0.400pt}{0.312pt}} -\multiput(540.58,577.67)(0.493,-0.576){23}{\rule{0.119pt}{0.562pt}} -\multiput(539.17,578.83)(13.000,-13.834){2}{\rule{0.400pt}{0.281pt}} -\multiput(553.58,562.54)(0.493,-0.616){23}{\rule{0.119pt}{0.592pt}} -\multiput(552.17,563.77)(13.000,-14.771){2}{\rule{0.400pt}{0.296pt}} -\multiput(566.00,547.92)(0.497,-0.494){25}{\rule{0.500pt}{0.119pt}} -\multiput(566.00,548.17)(12.962,-14.000){2}{\rule{0.250pt}{0.400pt}} -\multiput(580.00,533.92)(0.497,-0.493){23}{\rule{0.500pt}{0.119pt}} -\multiput(580.00,534.17)(11.962,-13.000){2}{\rule{0.250pt}{0.400pt}} -\multiput(593.00,520.92)(0.539,-0.492){21}{\rule{0.533pt}{0.119pt}} -\multiput(593.00,521.17)(11.893,-12.000){2}{\rule{0.267pt}{0.400pt}} -\multiput(606.00,508.92)(0.539,-0.492){21}{\rule{0.533pt}{0.119pt}} -\multiput(606.00,509.17)(11.893,-12.000){2}{\rule{0.267pt}{0.400pt}} -\multiput(619.00,496.92)(0.652,-0.491){17}{\rule{0.620pt}{0.118pt}} -\multiput(619.00,497.17)(11.713,-10.000){2}{\rule{0.310pt}{0.400pt}} -\multiput(632.00,486.92)(0.704,-0.491){17}{\rule{0.660pt}{0.118pt}} -\multiput(632.00,487.17)(12.630,-10.000){2}{\rule{0.330pt}{0.400pt}} -\multiput(646.00,476.93)(0.728,-0.489){15}{\rule{0.678pt}{0.118pt}} -\multiput(646.00,477.17)(11.593,-9.000){2}{\rule{0.339pt}{0.400pt}} -\multiput(659.00,467.93)(0.824,-0.488){13}{\rule{0.750pt}{0.117pt}} -\multiput(659.00,468.17)(11.443,-8.000){2}{\rule{0.375pt}{0.400pt}} -\multiput(672.00,459.93)(0.950,-0.485){11}{\rule{0.843pt}{0.117pt}} -\multiput(672.00,460.17)(11.251,-7.000){2}{\rule{0.421pt}{0.400pt}} -\multiput(685.00,452.93)(1.214,-0.482){9}{\rule{1.033pt}{0.116pt}} -\multiput(685.00,453.17)(11.855,-6.000){2}{\rule{0.517pt}{0.400pt}} -\multiput(699.00,446.93)(1.123,-0.482){9}{\rule{0.967pt}{0.116pt}} -\multiput(699.00,447.17)(10.994,-6.000){2}{\rule{0.483pt}{0.400pt}} -\multiput(712.00,440.94)(1.797,-0.468){5}{\rule{1.400pt}{0.113pt}} -\multiput(712.00,441.17)(10.094,-4.000){2}{\rule{0.700pt}{0.400pt}} -\multiput(725.00,436.94)(1.797,-0.468){5}{\rule{1.400pt}{0.113pt}} -\multiput(725.00,437.17)(10.094,-4.000){2}{\rule{0.700pt}{0.400pt}} -\put(738,432.17){\rule{2.700pt}{0.400pt}} -\multiput(738.00,433.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}} -\put(751,430.17){\rule{2.900pt}{0.400pt}} -\multiput(751.00,431.17)(7.981,-2.000){2}{\rule{1.450pt}{0.400pt}} -\put(765,428.67){\rule{3.132pt}{0.400pt}} -\multiput(765.00,429.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(1299.0,735.0){\rule[-0.200pt]{24.090pt}{0.400pt}} -\put(791,428.67){\rule{3.132pt}{0.400pt}} -\multiput(791.00,428.17)(6.500,1.000){2}{\rule{1.566pt}{0.400pt}} -\put(804,430.17){\rule{2.900pt}{0.400pt}} -\multiput(804.00,429.17)(7.981,2.000){2}{\rule{1.450pt}{0.400pt}} -\put(818,432.17){\rule{2.700pt}{0.400pt}} -\multiput(818.00,431.17)(7.396,2.000){2}{\rule{1.350pt}{0.400pt}} -\multiput(831.00,434.60)(1.797,0.468){5}{\rule{1.400pt}{0.113pt}} -\multiput(831.00,433.17)(10.094,4.000){2}{\rule{0.700pt}{0.400pt}} -\multiput(844.00,438.60)(1.797,0.468){5}{\rule{1.400pt}{0.113pt}} -\multiput(844.00,437.17)(10.094,4.000){2}{\rule{0.700pt}{0.400pt}} -\multiput(857.00,442.59)(1.123,0.482){9}{\rule{0.967pt}{0.116pt}} -\multiput(857.00,441.17)(10.994,6.000){2}{\rule{0.483pt}{0.400pt}} -\multiput(870.00,448.59)(1.214,0.482){9}{\rule{1.033pt}{0.116pt}} -\multiput(870.00,447.17)(11.855,6.000){2}{\rule{0.517pt}{0.400pt}} -\multiput(884.00,454.59)(0.950,0.485){11}{\rule{0.843pt}{0.117pt}} -\multiput(884.00,453.17)(11.251,7.000){2}{\rule{0.421pt}{0.400pt}} -\multiput(897.00,461.59)(0.824,0.488){13}{\rule{0.750pt}{0.117pt}} -\multiput(897.00,460.17)(11.443,8.000){2}{\rule{0.375pt}{0.400pt}} -\multiput(910.00,469.59)(0.728,0.489){15}{\rule{0.678pt}{0.118pt}} -\multiput(910.00,468.17)(11.593,9.000){2}{\rule{0.339pt}{0.400pt}} -\multiput(923.00,478.58)(0.704,0.491){17}{\rule{0.660pt}{0.118pt}} -\multiput(923.00,477.17)(12.630,10.000){2}{\rule{0.330pt}{0.400pt}} -\multiput(937.00,488.58)(0.652,0.491){17}{\rule{0.620pt}{0.118pt}} -\multiput(937.00,487.17)(11.713,10.000){2}{\rule{0.310pt}{0.400pt}} -\multiput(950.00,498.58)(0.539,0.492){21}{\rule{0.533pt}{0.119pt}} -\multiput(950.00,497.17)(11.893,12.000){2}{\rule{0.267pt}{0.400pt}} -\multiput(963.00,510.58)(0.539,0.492){21}{\rule{0.533pt}{0.119pt}} -\multiput(963.00,509.17)(11.893,12.000){2}{\rule{0.267pt}{0.400pt}} -\multiput(976.00,522.58)(0.497,0.493){23}{\rule{0.500pt}{0.119pt}} -\multiput(976.00,521.17)(11.962,13.000){2}{\rule{0.250pt}{0.400pt}} -\multiput(989.00,535.58)(0.497,0.494){25}{\rule{0.500pt}{0.119pt}} -\multiput(989.00,534.17)(12.962,14.000){2}{\rule{0.250pt}{0.400pt}} -\multiput(1003.58,549.00)(0.493,0.616){23}{\rule{0.119pt}{0.592pt}} -\multiput(1002.17,549.00)(13.000,14.771){2}{\rule{0.400pt}{0.296pt}} -\multiput(1016.58,565.00)(0.493,0.576){23}{\rule{0.119pt}{0.562pt}} -\multiput(1015.17,565.00)(13.000,13.834){2}{\rule{0.400pt}{0.281pt}} -\multiput(1029.58,580.00)(0.493,0.655){23}{\rule{0.119pt}{0.623pt}} -\multiput(1028.17,580.00)(13.000,15.707){2}{\rule{0.400pt}{0.312pt}} -\multiput(1042.58,597.00)(0.494,0.644){25}{\rule{0.119pt}{0.614pt}} -\multiput(1041.17,597.00)(14.000,16.725){2}{\rule{0.400pt}{0.307pt}} -\multiput(1056.58,615.00)(0.493,0.734){23}{\rule{0.119pt}{0.685pt}} -\multiput(1055.17,615.00)(13.000,17.579){2}{\rule{0.400pt}{0.342pt}} -\multiput(1069.58,634.00)(0.493,0.734){23}{\rule{0.119pt}{0.685pt}} -\multiput(1068.17,634.00)(13.000,17.579){2}{\rule{0.400pt}{0.342pt}} -\multiput(1082.58,653.00)(0.493,0.774){23}{\rule{0.119pt}{0.715pt}} -\multiput(1081.17,653.00)(13.000,18.515){2}{\rule{0.400pt}{0.358pt}} -\multiput(1095.58,673.00)(0.493,0.853){23}{\rule{0.119pt}{0.777pt}} -\multiput(1094.17,673.00)(13.000,20.387){2}{\rule{0.400pt}{0.388pt}} -\multiput(1108.58,695.00)(0.494,0.791){25}{\rule{0.119pt}{0.729pt}} -\multiput(1107.17,695.00)(14.000,20.488){2}{\rule{0.400pt}{0.364pt}} -\multiput(1122.58,717.00)(0.493,0.893){23}{\rule{0.119pt}{0.808pt}} -\multiput(1121.17,717.00)(13.000,21.324){2}{\rule{0.400pt}{0.404pt}} -\multiput(1135.58,740.00)(0.493,0.933){23}{\rule{0.119pt}{0.838pt}} -\multiput(1134.17,740.00)(13.000,22.260){2}{\rule{0.400pt}{0.419pt}} -\multiput(1148.59,764.00)(0.485,0.874){11}{\rule{0.117pt}{0.786pt}} -\multiput(1147.17,764.00)(7.000,10.369){2}{\rule{0.400pt}{0.393pt}} -\put(778.0,429.0){\rule[-0.200pt]{3.132pt}{0.400pt}} -\put(1279,694){\makebox(0,0)[r]{sin(x)}} -\put(1299.0,694.0){\rule[-0.200pt]{24.090pt}{0.400pt}} -\put(130,523){\usebox{\plotpoint}} -\multiput(130.58,518.63)(0.493,-1.210){23}{\rule{0.119pt}{1.054pt}} -\multiput(129.17,520.81)(13.000,-28.813){2}{\rule{0.400pt}{0.527pt}} -\multiput(143.58,487.37)(0.493,-1.290){23}{\rule{0.119pt}{1.115pt}} -\multiput(142.17,489.68)(13.000,-30.685){2}{\rule{0.400pt}{0.558pt}} -\multiput(156.58,454.43)(0.494,-1.268){25}{\rule{0.119pt}{1.100pt}} -\multiput(155.17,456.72)(14.000,-32.717){2}{\rule{0.400pt}{0.550pt}} -\multiput(170.58,419.11)(0.493,-1.369){23}{\rule{0.119pt}{1.177pt}} -\multiput(169.17,421.56)(13.000,-32.557){2}{\rule{0.400pt}{0.588pt}} -\multiput(183.58,384.37)(0.493,-1.290){23}{\rule{0.119pt}{1.115pt}} -\multiput(182.17,386.68)(13.000,-30.685){2}{\rule{0.400pt}{0.558pt}} -\multiput(196.58,351.75)(0.493,-1.171){23}{\rule{0.119pt}{1.023pt}} -\multiput(195.17,353.88)(13.000,-27.877){2}{\rule{0.400pt}{0.512pt}} -\multiput(209.58,322.50)(0.494,-0.938){25}{\rule{0.119pt}{0.843pt}} -\multiput(208.17,324.25)(14.000,-24.251){2}{\rule{0.400pt}{0.421pt}} -\multiput(223.58,296.90)(0.493,-0.814){23}{\rule{0.119pt}{0.746pt}} -\multiput(222.17,298.45)(13.000,-19.451){2}{\rule{0.400pt}{0.373pt}} -\multiput(236.58,276.80)(0.493,-0.536){23}{\rule{0.119pt}{0.531pt}} -\multiput(235.17,277.90)(13.000,-12.898){2}{\rule{0.400pt}{0.265pt}} -\multiput(249.00,263.93)(0.824,-0.488){13}{\rule{0.750pt}{0.117pt}} -\multiput(249.00,264.17)(11.443,-8.000){2}{\rule{0.375pt}{0.400pt}} -\put(262,255.67){\rule{3.132pt}{0.400pt}} -\multiput(262.00,256.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\multiput(275.00,256.59)(1.214,0.482){9}{\rule{1.033pt}{0.116pt}} -\multiput(275.00,255.17)(11.855,6.000){2}{\rule{0.517pt}{0.400pt}} -\multiput(289.00,262.58)(0.497,0.493){23}{\rule{0.500pt}{0.119pt}} -\multiput(289.00,261.17)(11.962,13.000){2}{\rule{0.250pt}{0.400pt}} -\multiput(302.58,275.00)(0.493,0.734){23}{\rule{0.119pt}{0.685pt}} -\multiput(301.17,275.00)(13.000,17.579){2}{\rule{0.400pt}{0.342pt}} -\multiput(315.58,294.00)(0.493,0.972){23}{\rule{0.119pt}{0.869pt}} -\multiput(314.17,294.00)(13.000,23.196){2}{\rule{0.400pt}{0.435pt}} -\multiput(328.58,319.00)(0.494,1.048){25}{\rule{0.119pt}{0.929pt}} -\multiput(327.17,319.00)(14.000,27.073){2}{\rule{0.400pt}{0.464pt}} -\multiput(342.58,348.00)(0.493,1.290){23}{\rule{0.119pt}{1.115pt}} -\multiput(341.17,348.00)(13.000,30.685){2}{\rule{0.400pt}{0.558pt}} -\multiput(355.58,381.00)(0.493,1.329){23}{\rule{0.119pt}{1.146pt}} -\multiput(354.17,381.00)(13.000,31.621){2}{\rule{0.400pt}{0.573pt}} -\multiput(368.58,415.00)(0.493,1.369){23}{\rule{0.119pt}{1.177pt}} -\multiput(367.17,415.00)(13.000,32.557){2}{\rule{0.400pt}{0.588pt}} -\multiput(381.58,450.00)(0.493,1.329){23}{\rule{0.119pt}{1.146pt}} -\multiput(380.17,450.00)(13.000,31.621){2}{\rule{0.400pt}{0.573pt}} -\multiput(394.58,484.00)(0.494,1.158){25}{\rule{0.119pt}{1.014pt}} -\multiput(393.17,484.00)(14.000,29.895){2}{\rule{0.400pt}{0.507pt}} -\multiput(408.58,516.00)(0.493,1.091){23}{\rule{0.119pt}{0.962pt}} -\multiput(407.17,516.00)(13.000,26.004){2}{\rule{0.400pt}{0.481pt}} -\multiput(421.58,544.00)(0.493,0.933){23}{\rule{0.119pt}{0.838pt}} -\multiput(420.17,544.00)(13.000,22.260){2}{\rule{0.400pt}{0.419pt}} -\multiput(434.58,568.00)(0.493,0.695){23}{\rule{0.119pt}{0.654pt}} -\multiput(433.17,568.00)(13.000,16.643){2}{\rule{0.400pt}{0.327pt}} -\multiput(447.00,586.58)(0.582,0.492){21}{\rule{0.567pt}{0.119pt}} -\multiput(447.00,585.17)(12.824,12.000){2}{\rule{0.283pt}{0.400pt}} -\multiput(461.00,598.60)(1.797,0.468){5}{\rule{1.400pt}{0.113pt}} -\multiput(461.00,597.17)(10.094,4.000){2}{\rule{0.700pt}{0.400pt}} -\put(474,600.17){\rule{2.700pt}{0.400pt}} -\multiput(474.00,601.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}} -\multiput(487.00,598.93)(0.728,-0.489){15}{\rule{0.678pt}{0.118pt}} -\multiput(487.00,599.17)(11.593,-9.000){2}{\rule{0.339pt}{0.400pt}} -\multiput(500.58,588.54)(0.493,-0.616){23}{\rule{0.119pt}{0.592pt}} -\multiput(499.17,589.77)(13.000,-14.771){2}{\rule{0.400pt}{0.296pt}} -\multiput(513.58,571.98)(0.494,-0.791){25}{\rule{0.119pt}{0.729pt}} -\multiput(512.17,573.49)(14.000,-20.488){2}{\rule{0.400pt}{0.364pt}} -\multiput(527.58,549.14)(0.493,-1.052){23}{\rule{0.119pt}{0.931pt}} -\multiput(526.17,551.07)(13.000,-25.068){2}{\rule{0.400pt}{0.465pt}} -\multiput(540.58,521.75)(0.493,-1.171){23}{\rule{0.119pt}{1.023pt}} -\multiput(539.17,523.88)(13.000,-27.877){2}{\rule{0.400pt}{0.512pt}} -\multiput(553.58,491.24)(0.493,-1.329){23}{\rule{0.119pt}{1.146pt}} -\multiput(552.17,493.62)(13.000,-31.621){2}{\rule{0.400pt}{0.573pt}} -\multiput(566.58,457.43)(0.494,-1.268){25}{\rule{0.119pt}{1.100pt}} -\multiput(565.17,459.72)(14.000,-32.717){2}{\rule{0.400pt}{0.550pt}} -\multiput(580.58,422.11)(0.493,-1.369){23}{\rule{0.119pt}{1.177pt}} -\multiput(579.17,424.56)(13.000,-32.557){2}{\rule{0.400pt}{0.588pt}} -\multiput(593.58,387.37)(0.493,-1.290){23}{\rule{0.119pt}{1.115pt}} -\multiput(592.17,389.68)(13.000,-30.685){2}{\rule{0.400pt}{0.558pt}} -\multiput(606.58,354.75)(0.493,-1.171){23}{\rule{0.119pt}{1.023pt}} -\multiput(605.17,356.88)(13.000,-27.877){2}{\rule{0.400pt}{0.512pt}} -\multiput(619.58,325.14)(0.493,-1.052){23}{\rule{0.119pt}{0.931pt}} -\multiput(618.17,327.07)(13.000,-25.068){2}{\rule{0.400pt}{0.465pt}} -\multiput(632.58,299.09)(0.494,-0.754){25}{\rule{0.119pt}{0.700pt}} -\multiput(631.17,300.55)(14.000,-19.547){2}{\rule{0.400pt}{0.350pt}} -\multiput(646.58,278.67)(0.493,-0.576){23}{\rule{0.119pt}{0.562pt}} -\multiput(645.17,279.83)(13.000,-13.834){2}{\rule{0.400pt}{0.281pt}} -\multiput(659.00,264.93)(0.728,-0.489){15}{\rule{0.678pt}{0.118pt}} -\multiput(659.00,265.17)(11.593,-9.000){2}{\rule{0.339pt}{0.400pt}} -\put(672,255.67){\rule{3.132pt}{0.400pt}} -\multiput(672.00,256.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\multiput(685.00,256.59)(1.489,0.477){7}{\rule{1.220pt}{0.115pt}} -\multiput(685.00,255.17)(11.468,5.000){2}{\rule{0.610pt}{0.400pt}} -\multiput(699.00,261.58)(0.497,0.493){23}{\rule{0.500pt}{0.119pt}} -\multiput(699.00,260.17)(11.962,13.000){2}{\rule{0.250pt}{0.400pt}} -\multiput(712.58,274.00)(0.493,0.695){23}{\rule{0.119pt}{0.654pt}} -\multiput(711.17,274.00)(13.000,16.643){2}{\rule{0.400pt}{0.327pt}} -\multiput(725.58,292.00)(0.493,0.933){23}{\rule{0.119pt}{0.838pt}} -\multiput(724.17,292.00)(13.000,22.260){2}{\rule{0.400pt}{0.419pt}} -\multiput(738.58,316.00)(0.493,1.131){23}{\rule{0.119pt}{0.992pt}} -\multiput(737.17,316.00)(13.000,26.940){2}{\rule{0.400pt}{0.496pt}} -\multiput(751.58,345.00)(0.494,1.158){25}{\rule{0.119pt}{1.014pt}} -\multiput(750.17,345.00)(14.000,29.895){2}{\rule{0.400pt}{0.507pt}} -\multiput(765.58,377.00)(0.493,1.369){23}{\rule{0.119pt}{1.177pt}} -\multiput(764.17,377.00)(13.000,32.557){2}{\rule{0.400pt}{0.588pt}} -\multiput(778.58,412.00)(0.493,1.329){23}{\rule{0.119pt}{1.146pt}} -\multiput(777.17,412.00)(13.000,31.621){2}{\rule{0.400pt}{0.573pt}} -\multiput(791.58,446.00)(0.493,1.369){23}{\rule{0.119pt}{1.177pt}} -\multiput(790.17,446.00)(13.000,32.557){2}{\rule{0.400pt}{0.588pt}} -\multiput(804.58,481.00)(0.494,1.158){25}{\rule{0.119pt}{1.014pt}} -\multiput(803.17,481.00)(14.000,29.895){2}{\rule{0.400pt}{0.507pt}} -\multiput(818.58,513.00)(0.493,1.131){23}{\rule{0.119pt}{0.992pt}} -\multiput(817.17,513.00)(13.000,26.940){2}{\rule{0.400pt}{0.496pt}} -\multiput(831.58,542.00)(0.493,0.933){23}{\rule{0.119pt}{0.838pt}} -\multiput(830.17,542.00)(13.000,22.260){2}{\rule{0.400pt}{0.419pt}} -\multiput(844.58,566.00)(0.493,0.695){23}{\rule{0.119pt}{0.654pt}} -\multiput(843.17,566.00)(13.000,16.643){2}{\rule{0.400pt}{0.327pt}} -\multiput(857.00,584.58)(0.497,0.493){23}{\rule{0.500pt}{0.119pt}} -\multiput(857.00,583.17)(11.962,13.000){2}{\rule{0.250pt}{0.400pt}} -\multiput(870.00,597.59)(1.489,0.477){7}{\rule{1.220pt}{0.115pt}} -\multiput(870.00,596.17)(11.468,5.000){2}{\rule{0.610pt}{0.400pt}} -\put(884,600.67){\rule{3.132pt}{0.400pt}} -\multiput(884.00,601.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\multiput(897.00,599.93)(0.728,-0.489){15}{\rule{0.678pt}{0.118pt}} -\multiput(897.00,600.17)(11.593,-9.000){2}{\rule{0.339pt}{0.400pt}} -\multiput(910.58,589.67)(0.493,-0.576){23}{\rule{0.119pt}{0.562pt}} -\multiput(909.17,590.83)(13.000,-13.834){2}{\rule{0.400pt}{0.281pt}} -\multiput(923.58,574.09)(0.494,-0.754){25}{\rule{0.119pt}{0.700pt}} -\multiput(922.17,575.55)(14.000,-19.547){2}{\rule{0.400pt}{0.350pt}} -\multiput(937.58,552.14)(0.493,-1.052){23}{\rule{0.119pt}{0.931pt}} -\multiput(936.17,554.07)(13.000,-25.068){2}{\rule{0.400pt}{0.465pt}} -\multiput(950.58,524.75)(0.493,-1.171){23}{\rule{0.119pt}{1.023pt}} -\multiput(949.17,526.88)(13.000,-27.877){2}{\rule{0.400pt}{0.512pt}} -\multiput(963.58,494.37)(0.493,-1.290){23}{\rule{0.119pt}{1.115pt}} -\multiput(962.17,496.68)(13.000,-30.685){2}{\rule{0.400pt}{0.558pt}} -\multiput(976.58,461.11)(0.493,-1.369){23}{\rule{0.119pt}{1.177pt}} -\multiput(975.17,463.56)(13.000,-32.557){2}{\rule{0.400pt}{0.588pt}} -\multiput(989.58,426.43)(0.494,-1.268){25}{\rule{0.119pt}{1.100pt}} -\multiput(988.17,428.72)(14.000,-32.717){2}{\rule{0.400pt}{0.550pt}} -\multiput(1003.58,391.24)(0.493,-1.329){23}{\rule{0.119pt}{1.146pt}} -\multiput(1002.17,393.62)(13.000,-31.621){2}{\rule{0.400pt}{0.573pt}} -\multiput(1016.58,357.75)(0.493,-1.171){23}{\rule{0.119pt}{1.023pt}} -\multiput(1015.17,359.88)(13.000,-27.877){2}{\rule{0.400pt}{0.512pt}} -\multiput(1029.58,328.14)(0.493,-1.052){23}{\rule{0.119pt}{0.931pt}} -\multiput(1028.17,330.07)(13.000,-25.068){2}{\rule{0.400pt}{0.465pt}} -\multiput(1042.58,301.98)(0.494,-0.791){25}{\rule{0.119pt}{0.729pt}} -\multiput(1041.17,303.49)(14.000,-20.488){2}{\rule{0.400pt}{0.364pt}} -\multiput(1056.58,280.54)(0.493,-0.616){23}{\rule{0.119pt}{0.592pt}} -\multiput(1055.17,281.77)(13.000,-14.771){2}{\rule{0.400pt}{0.296pt}} -\multiput(1069.00,265.93)(0.728,-0.489){15}{\rule{0.678pt}{0.118pt}} -\multiput(1069.00,266.17)(11.593,-9.000){2}{\rule{0.339pt}{0.400pt}} -\put(1082,256.17){\rule{2.700pt}{0.400pt}} -\multiput(1082.00,257.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}} -\multiput(1095.00,256.60)(1.797,0.468){5}{\rule{1.400pt}{0.113pt}} -\multiput(1095.00,255.17)(10.094,4.000){2}{\rule{0.700pt}{0.400pt}} -\multiput(1108.00,260.58)(0.582,0.492){21}{\rule{0.567pt}{0.119pt}} -\multiput(1108.00,259.17)(12.824,12.000){2}{\rule{0.283pt}{0.400pt}} -\multiput(1122.58,272.00)(0.493,0.695){23}{\rule{0.119pt}{0.654pt}} -\multiput(1121.17,272.00)(13.000,16.643){2}{\rule{0.400pt}{0.327pt}} -\multiput(1135.58,290.00)(0.493,0.933){23}{\rule{0.119pt}{0.838pt}} -\multiput(1134.17,290.00)(13.000,22.260){2}{\rule{0.400pt}{0.419pt}} -\multiput(1148.58,314.00)(0.493,1.091){23}{\rule{0.119pt}{0.962pt}} -\multiput(1147.17,314.00)(13.000,26.004){2}{\rule{0.400pt}{0.481pt}} -\multiput(1161.58,342.00)(0.494,1.158){25}{\rule{0.119pt}{1.014pt}} -\multiput(1160.17,342.00)(14.000,29.895){2}{\rule{0.400pt}{0.507pt}} -\multiput(1175.58,374.00)(0.493,1.329){23}{\rule{0.119pt}{1.146pt}} -\multiput(1174.17,374.00)(13.000,31.621){2}{\rule{0.400pt}{0.573pt}} -\multiput(1188.58,408.00)(0.493,1.369){23}{\rule{0.119pt}{1.177pt}} -\multiput(1187.17,408.00)(13.000,32.557){2}{\rule{0.400pt}{0.588pt}} -\multiput(1201.58,443.00)(0.493,1.329){23}{\rule{0.119pt}{1.146pt}} -\multiput(1200.17,443.00)(13.000,31.621){2}{\rule{0.400pt}{0.573pt}} -\multiput(1214.58,477.00)(0.493,1.290){23}{\rule{0.119pt}{1.115pt}} -\multiput(1213.17,477.00)(13.000,30.685){2}{\rule{0.400pt}{0.558pt}} -\multiput(1227.58,510.00)(0.494,1.048){25}{\rule{0.119pt}{0.929pt}} -\multiput(1226.17,510.00)(14.000,27.073){2}{\rule{0.400pt}{0.464pt}} -\multiput(1241.58,539.00)(0.493,0.972){23}{\rule{0.119pt}{0.869pt}} -\multiput(1240.17,539.00)(13.000,23.196){2}{\rule{0.400pt}{0.435pt}} -\multiput(1254.58,564.00)(0.493,0.734){23}{\rule{0.119pt}{0.685pt}} -\multiput(1253.17,564.00)(13.000,17.579){2}{\rule{0.400pt}{0.342pt}} -\multiput(1267.00,583.58)(0.497,0.493){23}{\rule{0.500pt}{0.119pt}} -\multiput(1267.00,582.17)(11.962,13.000){2}{\rule{0.250pt}{0.400pt}} -\multiput(1280.00,596.59)(1.214,0.482){9}{\rule{1.033pt}{0.116pt}} -\multiput(1280.00,595.17)(11.855,6.000){2}{\rule{0.517pt}{0.400pt}} -\put(1294,600.67){\rule{3.132pt}{0.400pt}} -\multiput(1294.00,601.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\multiput(1307.00,599.93)(0.824,-0.488){13}{\rule{0.750pt}{0.117pt}} -\multiput(1307.00,600.17)(11.443,-8.000){2}{\rule{0.375pt}{0.400pt}} -\multiput(1320.58,590.80)(0.493,-0.536){23}{\rule{0.119pt}{0.531pt}} -\multiput(1319.17,591.90)(13.000,-12.898){2}{\rule{0.400pt}{0.265pt}} -\multiput(1333.58,575.90)(0.493,-0.814){23}{\rule{0.119pt}{0.746pt}} -\multiput(1332.17,577.45)(13.000,-19.451){2}{\rule{0.400pt}{0.373pt}} -\multiput(1346.58,554.50)(0.494,-0.938){25}{\rule{0.119pt}{0.843pt}} -\multiput(1345.17,556.25)(14.000,-24.251){2}{\rule{0.400pt}{0.421pt}} -\multiput(1360.58,527.75)(0.493,-1.171){23}{\rule{0.119pt}{1.023pt}} -\multiput(1359.17,529.88)(13.000,-27.877){2}{\rule{0.400pt}{0.512pt}} -\multiput(1373.58,497.37)(0.493,-1.290){23}{\rule{0.119pt}{1.115pt}} -\multiput(1372.17,499.68)(13.000,-30.685){2}{\rule{0.400pt}{0.558pt}} -\multiput(1386.58,464.11)(0.493,-1.369){23}{\rule{0.119pt}{1.177pt}} -\multiput(1385.17,466.56)(13.000,-32.557){2}{\rule{0.400pt}{0.588pt}} -\multiput(1399.58,429.43)(0.494,-1.268){25}{\rule{0.119pt}{1.100pt}} -\multiput(1398.17,431.72)(14.000,-32.717){2}{\rule{0.400pt}{0.550pt}} -\multiput(1413.58,394.37)(0.493,-1.290){23}{\rule{0.119pt}{1.115pt}} -\multiput(1412.17,396.68)(13.000,-30.685){2}{\rule{0.400pt}{0.558pt}} -\multiput(1426.58,361.63)(0.493,-1.210){23}{\rule{0.119pt}{1.054pt}} -\multiput(1425.17,363.81)(13.000,-28.813){2}{\rule{0.400pt}{0.527pt}} -\put(1279,653){\makebox(0,0)[r]{1/x}} -\put(1299.0,653.0){\rule[-0.200pt]{24.090pt}{0.400pt}} -\put(130,412){\usebox{\plotpoint}} -\put(130,410.67){\rule{3.132pt}{0.400pt}} -\multiput(130.00,411.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(170,409.67){\rule{3.132pt}{0.400pt}} -\multiput(170.00,410.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(143.0,411.0){\rule[-0.200pt]{6.504pt}{0.400pt}} -\put(196,408.67){\rule{3.132pt}{0.400pt}} -\multiput(196.00,409.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(183.0,410.0){\rule[-0.200pt]{3.132pt}{0.400pt}} -\put(223,407.67){\rule{3.132pt}{0.400pt}} -\multiput(223.00,408.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(209.0,409.0){\rule[-0.200pt]{3.373pt}{0.400pt}} -\put(249,406.67){\rule{3.132pt}{0.400pt}} -\multiput(249.00,407.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(236.0,408.0){\rule[-0.200pt]{3.132pt}{0.400pt}} -\put(275,405.67){\rule{3.373pt}{0.400pt}} -\multiput(275.00,406.17)(7.000,-1.000){2}{\rule{1.686pt}{0.400pt}} -\put(289,404.67){\rule{3.132pt}{0.400pt}} -\multiput(289.00,405.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(262.0,407.0){\rule[-0.200pt]{3.132pt}{0.400pt}} -\put(315,403.67){\rule{3.132pt}{0.400pt}} -\multiput(315.00,404.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(328,402.67){\rule{3.373pt}{0.400pt}} -\multiput(328.00,403.17)(7.000,-1.000){2}{\rule{1.686pt}{0.400pt}} -\put(302.0,405.0){\rule[-0.200pt]{3.132pt}{0.400pt}} -\put(355,401.67){\rule{3.132pt}{0.400pt}} -\multiput(355.00,402.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(368,400.67){\rule{3.132pt}{0.400pt}} -\multiput(368.00,401.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(381,399.67){\rule{3.132pt}{0.400pt}} -\multiput(381.00,400.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(394,398.67){\rule{3.373pt}{0.400pt}} -\multiput(394.00,399.17)(7.000,-1.000){2}{\rule{1.686pt}{0.400pt}} -\put(408,397.67){\rule{3.132pt}{0.400pt}} -\multiput(408.00,398.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(421,396.67){\rule{3.132pt}{0.400pt}} -\multiput(421.00,397.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(434,395.17){\rule{2.700pt}{0.400pt}} -\multiput(434.00,396.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}} -\put(447,393.67){\rule{3.373pt}{0.400pt}} -\multiput(447.00,394.17)(7.000,-1.000){2}{\rule{1.686pt}{0.400pt}} -\put(461,392.17){\rule{2.700pt}{0.400pt}} -\multiput(461.00,393.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}} -\put(474,390.67){\rule{3.132pt}{0.400pt}} -\multiput(474.00,391.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(487,389.17){\rule{2.700pt}{0.400pt}} -\multiput(487.00,390.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}} -\put(500,387.17){\rule{2.700pt}{0.400pt}} -\multiput(500.00,388.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}} -\put(513,385.17){\rule{2.900pt}{0.400pt}} -\multiput(513.00,386.17)(7.981,-2.000){2}{\rule{1.450pt}{0.400pt}} -\put(527,383.17){\rule{2.700pt}{0.400pt}} -\multiput(527.00,384.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}} -\multiput(540.00,381.95)(2.695,-0.447){3}{\rule{1.833pt}{0.108pt}} -\multiput(540.00,382.17)(9.195,-3.000){2}{\rule{0.917pt}{0.400pt}} -\multiput(553.00,378.95)(2.695,-0.447){3}{\rule{1.833pt}{0.108pt}} -\multiput(553.00,379.17)(9.195,-3.000){2}{\rule{0.917pt}{0.400pt}} -\multiput(566.00,375.95)(2.918,-0.447){3}{\rule{1.967pt}{0.108pt}} -\multiput(566.00,376.17)(9.918,-3.000){2}{\rule{0.983pt}{0.400pt}} -\multiput(580.00,372.94)(1.797,-0.468){5}{\rule{1.400pt}{0.113pt}} -\multiput(580.00,373.17)(10.094,-4.000){2}{\rule{0.700pt}{0.400pt}} -\multiput(593.00,368.93)(1.378,-0.477){7}{\rule{1.140pt}{0.115pt}} -\multiput(593.00,369.17)(10.634,-5.000){2}{\rule{0.570pt}{0.400pt}} -\multiput(606.00,363.93)(1.378,-0.477){7}{\rule{1.140pt}{0.115pt}} -\multiput(606.00,364.17)(10.634,-5.000){2}{\rule{0.570pt}{0.400pt}} -\multiput(619.00,358.93)(1.123,-0.482){9}{\rule{0.967pt}{0.116pt}} -\multiput(619.00,359.17)(10.994,-6.000){2}{\rule{0.483pt}{0.400pt}} -\multiput(632.00,352.93)(1.026,-0.485){11}{\rule{0.900pt}{0.117pt}} -\multiput(632.00,353.17)(12.132,-7.000){2}{\rule{0.450pt}{0.400pt}} -\multiput(646.00,345.93)(0.824,-0.488){13}{\rule{0.750pt}{0.117pt}} -\multiput(646.00,346.17)(11.443,-8.000){2}{\rule{0.375pt}{0.400pt}} -\multiput(659.00,337.92)(0.590,-0.492){19}{\rule{0.573pt}{0.118pt}} -\multiput(659.00,338.17)(11.811,-11.000){2}{\rule{0.286pt}{0.400pt}} -\multiput(672.58,325.80)(0.493,-0.536){23}{\rule{0.119pt}{0.531pt}} -\multiput(671.17,326.90)(13.000,-12.898){2}{\rule{0.400pt}{0.265pt}} -\multiput(685.58,311.57)(0.494,-0.607){25}{\rule{0.119pt}{0.586pt}} -\multiput(684.17,312.78)(14.000,-15.784){2}{\rule{0.400pt}{0.293pt}} -\multiput(699.58,293.52)(0.493,-0.933){23}{\rule{0.119pt}{0.838pt}} -\multiput(698.17,295.26)(13.000,-22.260){2}{\rule{0.400pt}{0.419pt}} -\multiput(712.58,268.11)(0.493,-1.369){23}{\rule{0.119pt}{1.177pt}} -\multiput(711.17,270.56)(13.000,-32.557){2}{\rule{0.400pt}{0.588pt}} -\multiput(725.58,230.69)(0.493,-2.122){23}{\rule{0.119pt}{1.762pt}} -\multiput(724.17,234.34)(13.000,-50.344){2}{\rule{0.400pt}{0.881pt}} -\multiput(738.58,170.94)(0.493,-3.906){23}{\rule{0.119pt}{3.146pt}} -\multiput(737.17,177.47)(13.000,-92.470){2}{\rule{0.400pt}{1.573pt}} -\put(750.67,82){\rule{0.400pt}{0.723pt}} -\multiput(750.17,83.50)(1.000,-1.500){2}{\rule{0.400pt}{0.361pt}} -\put(816.67,773){\rule{0.400pt}{0.723pt}} -\multiput(816.17,774.50)(1.000,-1.500){2}{\rule{0.400pt}{0.361pt}} -\multiput(818.58,759.94)(0.493,-3.906){23}{\rule{0.119pt}{3.146pt}} -\multiput(817.17,766.47)(13.000,-92.470){2}{\rule{0.400pt}{1.573pt}} -\multiput(831.58,666.69)(0.493,-2.122){23}{\rule{0.119pt}{1.762pt}} -\multiput(830.17,670.34)(13.000,-50.344){2}{\rule{0.400pt}{0.881pt}} -\multiput(844.58,615.11)(0.493,-1.369){23}{\rule{0.119pt}{1.177pt}} -\multiput(843.17,617.56)(13.000,-32.557){2}{\rule{0.400pt}{0.588pt}} -\multiput(857.58,581.52)(0.493,-0.933){23}{\rule{0.119pt}{0.838pt}} -\multiput(856.17,583.26)(13.000,-22.260){2}{\rule{0.400pt}{0.419pt}} -\multiput(870.58,558.57)(0.494,-0.607){25}{\rule{0.119pt}{0.586pt}} -\multiput(869.17,559.78)(14.000,-15.784){2}{\rule{0.400pt}{0.293pt}} -\multiput(884.58,541.80)(0.493,-0.536){23}{\rule{0.119pt}{0.531pt}} -\multiput(883.17,542.90)(13.000,-12.898){2}{\rule{0.400pt}{0.265pt}} -\multiput(897.00,528.92)(0.590,-0.492){19}{\rule{0.573pt}{0.118pt}} -\multiput(897.00,529.17)(11.811,-11.000){2}{\rule{0.286pt}{0.400pt}} -\multiput(910.00,517.93)(0.824,-0.488){13}{\rule{0.750pt}{0.117pt}} -\multiput(910.00,518.17)(11.443,-8.000){2}{\rule{0.375pt}{0.400pt}} -\multiput(923.00,509.93)(1.026,-0.485){11}{\rule{0.900pt}{0.117pt}} -\multiput(923.00,510.17)(12.132,-7.000){2}{\rule{0.450pt}{0.400pt}} -\multiput(937.00,502.93)(1.123,-0.482){9}{\rule{0.967pt}{0.116pt}} -\multiput(937.00,503.17)(10.994,-6.000){2}{\rule{0.483pt}{0.400pt}} -\multiput(950.00,496.93)(1.378,-0.477){7}{\rule{1.140pt}{0.115pt}} -\multiput(950.00,497.17)(10.634,-5.000){2}{\rule{0.570pt}{0.400pt}} -\multiput(963.00,491.93)(1.378,-0.477){7}{\rule{1.140pt}{0.115pt}} -\multiput(963.00,492.17)(10.634,-5.000){2}{\rule{0.570pt}{0.400pt}} -\multiput(976.00,486.94)(1.797,-0.468){5}{\rule{1.400pt}{0.113pt}} -\multiput(976.00,487.17)(10.094,-4.000){2}{\rule{0.700pt}{0.400pt}} -\multiput(989.00,482.95)(2.918,-0.447){3}{\rule{1.967pt}{0.108pt}} -\multiput(989.00,483.17)(9.918,-3.000){2}{\rule{0.983pt}{0.400pt}} -\multiput(1003.00,479.95)(2.695,-0.447){3}{\rule{1.833pt}{0.108pt}} -\multiput(1003.00,480.17)(9.195,-3.000){2}{\rule{0.917pt}{0.400pt}} -\multiput(1016.00,476.95)(2.695,-0.447){3}{\rule{1.833pt}{0.108pt}} -\multiput(1016.00,477.17)(9.195,-3.000){2}{\rule{0.917pt}{0.400pt}} -\put(1029,473.17){\rule{2.700pt}{0.400pt}} -\multiput(1029.00,474.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}} -\put(1042,471.17){\rule{2.900pt}{0.400pt}} -\multiput(1042.00,472.17)(7.981,-2.000){2}{\rule{1.450pt}{0.400pt}} -\put(1056,469.17){\rule{2.700pt}{0.400pt}} -\multiput(1056.00,470.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}} -\put(1069,467.17){\rule{2.700pt}{0.400pt}} -\multiput(1069.00,468.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}} -\put(1082,465.67){\rule{3.132pt}{0.400pt}} -\multiput(1082.00,466.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(1095,464.17){\rule{2.700pt}{0.400pt}} -\multiput(1095.00,465.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}} -\put(1108,462.67){\rule{3.373pt}{0.400pt}} -\multiput(1108.00,463.17)(7.000,-1.000){2}{\rule{1.686pt}{0.400pt}} -\put(1122,461.17){\rule{2.700pt}{0.400pt}} -\multiput(1122.00,462.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}} -\put(1135,459.67){\rule{3.132pt}{0.400pt}} -\multiput(1135.00,460.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(1148,458.67){\rule{3.132pt}{0.400pt}} -\multiput(1148.00,459.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(1161,457.67){\rule{3.373pt}{0.400pt}} -\multiput(1161.00,458.17)(7.000,-1.000){2}{\rule{1.686pt}{0.400pt}} -\put(1175,456.67){\rule{3.132pt}{0.400pt}} -\multiput(1175.00,457.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(1188,455.67){\rule{3.132pt}{0.400pt}} -\multiput(1188.00,456.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(1201,454.67){\rule{3.132pt}{0.400pt}} -\multiput(1201.00,455.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(342.0,403.0){\rule[-0.200pt]{3.132pt}{0.400pt}} -\put(1227,453.67){\rule{3.373pt}{0.400pt}} -\multiput(1227.00,454.17)(7.000,-1.000){2}{\rule{1.686pt}{0.400pt}} -\put(1241,452.67){\rule{3.132pt}{0.400pt}} -\multiput(1241.00,453.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(1214.0,455.0){\rule[-0.200pt]{3.132pt}{0.400pt}} -\put(1267,451.67){\rule{3.132pt}{0.400pt}} -\multiput(1267.00,452.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(1280,450.67){\rule{3.373pt}{0.400pt}} -\multiput(1280.00,451.17)(7.000,-1.000){2}{\rule{1.686pt}{0.400pt}} -\put(1254.0,453.0){\rule[-0.200pt]{3.132pt}{0.400pt}} -\put(1307,449.67){\rule{3.132pt}{0.400pt}} -\multiput(1307.00,450.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(1294.0,451.0){\rule[-0.200pt]{3.132pt}{0.400pt}} -\put(1333,448.67){\rule{3.132pt}{0.400pt}} -\multiput(1333.00,449.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(1320.0,450.0){\rule[-0.200pt]{3.132pt}{0.400pt}} -\put(1360,447.67){\rule{3.132pt}{0.400pt}} -\multiput(1360.00,448.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(1346.0,449.0){\rule[-0.200pt]{3.373pt}{0.400pt}} -\put(1386,446.67){\rule{3.132pt}{0.400pt}} -\multiput(1386.00,447.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(1373.0,448.0){\rule[-0.200pt]{3.132pt}{0.400pt}} -\put(1426,445.67){\rule{3.132pt}{0.400pt}} -\multiput(1426.00,446.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}} -\put(1399.0,447.0){\rule[-0.200pt]{6.504pt}{0.400pt}} -\put(130.0,82.0){\rule[-0.200pt]{0.400pt}{167.185pt}} -\put(130.0,82.0){\rule[-0.200pt]{315.338pt}{0.400pt}} -\put(1439.0,82.0){\rule[-0.200pt]{0.400pt}{167.185pt}} -\put(130.0,776.0){\rule[-0.200pt]{315.338pt}{0.400pt}} -\end{picture} +% GNUPLOT: LaTeX picture with Postscript +\begingroup + \makeatletter + \providecommand\color[2][]{% + \GenericError{(gnuplot) \space\space\space\@spaces}{% + Package color not loaded in conjunction with + terminal option `colourtext'% + }{See the gnuplot documentation for explanation.% + }{Either use 'blacktext' in gnuplot or load the package + color.sty in LaTeX.}% + \renewcommand\color[2][]{}% + }% + \providecommand\includegraphics[2][]{% + \GenericError{(gnuplot) \space\space\space\@spaces}{% + Package graphicx or graphics not loaded% + }{See the gnuplot documentation for explanation.% + }{The gnuplot epslatex terminal needs graphicx.sty or graphics.sty.}% + \renewcommand\includegraphics[2][]{}% + }% + \providecommand\rotatebox[2]{#2}% + \@ifundefined{ifGPcolor}{% + \newif\ifGPcolor + \GPcolortrue + }{}% + \@ifundefined{ifGPblacktext}{% + \newif\ifGPblacktext + \GPblacktexttrue + }{}% + % define a \g@addto@macro without @ in the name: + \let\gplgaddtomacro\g@addto@macro + % define empty templates for all commands taking text: + \gdef\gplbacktext{}% + \gdef\gplfronttext{}% + \makeatother + \ifGPblacktext + % no textcolor at all + \def\colorrgb#1{}% + \def\colorgray#1{}% + \else + % gray or color? + \ifGPcolor + \def\colorrgb#1{\color[rgb]{#1}}% + \def\colorgray#1{\color[gray]{#1}}% + \expandafter\def\csname LTw\endcsname{\color{white}}% + \expandafter\def\csname LTb\endcsname{\color{black}}% + \expandafter\def\csname LTa\endcsname{\color{black}}% + \expandafter\def\csname LT0\endcsname{\color[rgb]{1,0,0}}% + \expandafter\def\csname LT1\endcsname{\color[rgb]{0,1,0}}% + \expandafter\def\csname LT2\endcsname{\color[rgb]{0,0,1}}% + \expandafter\def\csname LT3\endcsname{\color[rgb]{1,0,1}}% + \expandafter\def\csname LT4\endcsname{\color[rgb]{0,1,1}}% + \expandafter\def\csname LT5\endcsname{\color[rgb]{1,1,0}}% + \expandafter\def\csname LT6\endcsname{\color[rgb]{0,0,0}}% + \expandafter\def\csname LT7\endcsname{\color[rgb]{1,0.3,0}}% + \expandafter\def\csname LT8\endcsname{\color[rgb]{0.5,0.5,0.5}}% + \else + % gray + \def\colorrgb#1{\color{black}}% + \def\colorgray#1{\color[gray]{#1}}% + \expandafter\def\csname LTw\endcsname{\color{white}}% + \expandafter\def\csname LTb\endcsname{\color{black}}% + \expandafter\def\csname LTa\endcsname{\color{black}}% + \expandafter\def\csname LT0\endcsname{\color{black}}% + \expandafter\def\csname LT1\endcsname{\color{black}}% + \expandafter\def\csname LT2\endcsname{\color{black}}% + \expandafter\def\csname LT3\endcsname{\color{black}}% + \expandafter\def\csname LT4\endcsname{\color{black}}% + \expandafter\def\csname LT5\endcsname{\color{black}}% + \expandafter\def\csname LT6\endcsname{\color{black}}% + \expandafter\def\csname LT7\endcsname{\color{black}}% + \expandafter\def\csname LT8\endcsname{\color{black}}% + \fi + \fi + \setlength{\unitlength}{0.0500bp}% + \ifx\gptboxheight\undefined% + \newlength{\gptboxheight}% + \newlength{\gptboxwidth}% + \newsavebox{\gptboxtext}% + \fi% + \setlength{\fboxrule}{0.5pt}% + \setlength{\fboxsep}{1pt}% + \definecolor{tbcol}{rgb}{1,1,1}% +\begin{picture}(7200.00,4320.00)% + \gplgaddtomacro\gplbacktext{% + \csname LTb\endcsname%% + \put(539,392){\makebox(0,0)[r]{\strut{}$-2$}}% + \csname LTb\endcsname%% + \put(539,807){\makebox(0,0)[r]{\strut{}$-1.5$}}% + \csname LTb\endcsname%% + \put(539,1222){\makebox(0,0)[r]{\strut{}$-1$}}% + \csname LTb\endcsname%% + \put(539,1637){\makebox(0,0)[r]{\strut{}$-0.5$}}% + \csname LTb\endcsname%% + \put(539,2052){\makebox(0,0)[r]{\strut{}$0$}}% + \csname LTb\endcsname%% + \put(539,2466){\makebox(0,0)[r]{\strut{}$0.5$}}% + \csname LTb\endcsname%% + \put(539,2881){\makebox(0,0)[r]{\strut{}$1$}}% + \csname LTb\endcsname%% + \put(539,3296){\makebox(0,0)[r]{\strut{}$1.5$}}% + \csname LTb\endcsname%% + \put(539,3711){\makebox(0,0)[r]{\strut{}$2$}}% + \csname LTb\endcsname%% + \put(637,196){\makebox(0,0){\strut{}$-10$}}% + \csname LTb\endcsname%% + \put(2199,196){\makebox(0,0){\strut{}$-5$}}% + \csname LTb\endcsname%% + \put(3761,196){\makebox(0,0){\strut{}$0$}}% + \csname LTb\endcsname%% + \put(5323,196){\makebox(0,0){\strut{}$5$}}% + \csname LTb\endcsname%% + \put(6885,196){\makebox(0,0){\strut{}$10$}}% + }% + \gplgaddtomacro\gplfronttext{% + \csname LTb\endcsname%% + \put(6121,3535){\makebox(0,0)[r]{\strut{}$(x/4)**2$}}% + \csname LTb\endcsname%% + \put(6121,3339){\makebox(0,0)[r]{\strut{}$sin(x)$}}% + \csname LTb\endcsname%% + \put(6121,3143){\makebox(0,0)[r]{\strut{}$1/x$}}% + \csname LTb\endcsname%% + \put(3761,4005){\makebox(0,0){\strut{}Some Math Functions}}% + }% + \gplbacktext + \put(0,0){\includegraphics[width={360.00bp},height={216.00bp}]{gunplot_plot}}% + \gplfronttext + \end{picture}% +\endgroup diff --git a/Doku/screenshot/dia.jpg b/Doku/screenshot/dia.jpg deleted file mode 100644 index 403bfe9fbda3cca3e7b330ec86eed572f7a52279..0000000000000000000000000000000000000000 Binary files a/Doku/screenshot/dia.jpg and /dev/null differ diff --git a/Doku/screenshot/dia.png b/Doku/screenshot/dia.png new file mode 100644 index 0000000000000000000000000000000000000000..47129361cd9d61cf227582840d1d1a4079de9793 Binary files /dev/null and b/Doku/screenshot/dia.png differ diff --git a/Doku/screenshot/firefox.jpg b/Doku/screenshot/firefox.jpg deleted file mode 100644 index cdeba59d97942e4787d8aff570a1e8f00abdadf4..0000000000000000000000000000000000000000 Binary files a/Doku/screenshot/firefox.jpg and /dev/null differ diff --git a/Doku/screenshot/firefox.png b/Doku/screenshot/firefox.png new file mode 100644 index 0000000000000000000000000000000000000000..ba9f5355bfe4dcafee519e3bf41723a5fa98f59d Binary files /dev/null and b/Doku/screenshot/firefox.png differ diff --git a/Doku/screenshot/gufw.jpg b/Doku/screenshot/gufw.jpg deleted file mode 100644 index e67438e2a89d2128af57e5ccb9a2197abdf44928..0000000000000000000000000000000000000000 Binary files a/Doku/screenshot/gufw.jpg and /dev/null differ diff --git a/Doku/screenshot/gufw.png b/Doku/screenshot/gufw.png new file mode 100644 index 0000000000000000000000000000000000000000..af8a88cdf9d576d4b77e9010e30645b09734c3ef Binary files /dev/null and b/Doku/screenshot/gufw.png differ diff --git a/Doku/screenshot/inkscape.jpg b/Doku/screenshot/inkscape.jpg deleted file mode 100644 index 4911f1297d99daefc53f651f95d068f2dcb935bd..0000000000000000000000000000000000000000 Binary files a/Doku/screenshot/inkscape.jpg and /dev/null differ diff --git a/Doku/screenshot/inkscape.png b/Doku/screenshot/inkscape.png new file mode 100644 index 0000000000000000000000000000000000000000..13a1447e6d02bcaedaf599500c029f2351a47ab5 Binary files /dev/null and b/Doku/screenshot/inkscape.png differ diff --git a/Doku/screenshot/kile.png b/Doku/screenshot/kile.png index 00371eedf333b67553175e0244b4e0c22e4f14c7..c50ab49fbd782e0f6b1c32701e3fdc7425017883 100644 Binary files a/Doku/screenshot/kile.png and b/Doku/screenshot/kile.png differ diff --git a/Doku/screenshot/texstudio.jpg b/Doku/screenshot/texstudio.jpg deleted file mode 100644 index c874a8663df3265f780faf3cbb682a07da8083a2..0000000000000000000000000000000000000000 Binary files a/Doku/screenshot/texstudio.jpg and /dev/null differ diff --git a/Doku/screenshot/texstudio.png b/Doku/screenshot/texstudio.png new file mode 100644 index 0000000000000000000000000000000000000000..b32f34fdfcc0e065b0c0de99218a30bda5f42daa Binary files /dev/null and b/Doku/screenshot/texstudio.png differ diff --git a/Doku/screenshot/thunderbird.jpg b/Doku/screenshot/thunderbird.jpg deleted file mode 100644 index a6b0a1225816b87b961368aad42bad9f5290f328..0000000000000000000000000000000000000000 Binary files a/Doku/screenshot/thunderbird.jpg and /dev/null differ diff --git a/Doku/screenshot/thunderbird.png b/Doku/screenshot/thunderbird.png new file mode 100644 index 0000000000000000000000000000000000000000..ed74049a2cf500229314eb8e2f7fc9ae42c4e6d9 Binary files /dev/null and b/Doku/screenshot/thunderbird.png differ diff --git a/Doku/thunderbird.tex b/Doku/thunderbird.tex index 7132270cdd59e9e65ad0216c88c99774d4c3db76..267032db0df14e46e79c33b2918f460842900db6 100644 --- a/Doku/thunderbird.tex +++ b/Doku/thunderbird.tex @@ -4,4 +4,6 @@ Thunderbird ist dein Standardmailprogramm, damit kannst du beispielsweise deine RWTH-Mails abrufen. Eine Anleitung, wie du Thunderbird einrichtest findest du unter -\scalebox{0.9}{\url{https://doc.itc.rwth-aachen.de/display/EML/Thunderbird+14+bis+Thunderbird+45}} +\scalebox{0.9}{\url{https://help.itc.rwth-aachen.de/en/service/1jefzdccuvuch/article/614566f01671435d9f0e267e49aeae54/}} + +Inbesondere sollte darauf geachtet werden, dass Benutzername gegenüber dem server das Kürzel (z.B. \texttt{ab123456@rwth-aachen.de}), die E-Mail-Addresse hingegen der Name (z.B. \texttt{vorname.nachname@rwth-aachen.de} oder \texttt{vorname.nachname1@rwth-aachen.de} falls es den Namen schon gab). Wenn das Kürzel als e-Mail-Addresse genutzt wird, erlaubt der RWTH-Mailserver euch nicht Mails zu verschicken. diff --git a/Doku/valgrind.tex b/Doku/valgrind.tex index e3e9f9670b136a3f1de05b8421677d1794cb73cf..ac17097e3b5a83713323cfbc608969fdfbdbe11e 100644 --- a/Doku/valgrind.tex +++ b/Doku/valgrind.tex @@ -1,5 +1,6 @@ \subsection{Valgrind} Valgrind ist ein Werkzeug zum Debuggen von compilierten Programmen, insbesondere von Speicherfehlern. Wenn man beispielsweise ein C oder C++-Programm geschrieben hat, kann man es mit Flags zum Debuggen (\texttt{-g} bei gcc und g++) kompilieren und danach mit \texttt{valgrind a.out} ausführen. +Valgrind bietet darüber hinaus Auswertungswerkzeuge, die bei der Programmoptimierung helfen, wie das dynamic heap analysis tool DHAT\footnote{siehe \url{https://valgrind.org/docs/manual/dh-manual.html}}. -Weitere Informationen findet man in der Manpage \texttt{man valgrind}. +Weitere Informationen findet man in der Manpage \texttt{man valgrind} oder Online auf \url{https://valgrind.org/docs/manual/}. diff --git a/scripts/linuxparty.sh b/scripts/linuxparty.sh index 9d4b050e43f91b73944a8a1aec49b2cadc82b6fe..b5004be1109bbe224788bb59992c90544b20c31d 100755 --- a/scripts/linuxparty.sh +++ b/scripts/linuxparty.sh @@ -448,10 +448,11 @@ echo "Installiere Standard-Programme" apt-get ${APT_SOURCE_ARG} install ${APT_ARGS} $(grep '^[^|#]*D[^|]*|' "$MY_DIR/../packages" | cut -d'|' -f 2) # System absichern -if askyesno "Netzwerk: Soll die Ubuntu Firewall (ufw/gufw) aktiviert werden ?" -then - $DEBUG ufw enable -fi +# ufw kann in kubuntu 22.04 nicht mehr aus der Live-umgebung gesetzt werden, wegen fehlender netfilter kernel module im kernel +#if askyesno "Netzwerk: Soll die Ubuntu Firewall (ufw/gufw) aktiviert werden ?" +#then +# $DEBUG ufw enable +#fi echo "Installation:" echo "Programme, die für alle Fachrichtungen interessant sind (7zip, gimp, git, ... )"