diff --git a/Doku/gdb.tex b/Doku/gdb.tex
index e11ed0aedc7cb65aee7c99e90e70028fc9a2cdbf..0cc61dfbad6dfde2a20bae054b5a1a038a6a2d8c 100644
--- a/Doku/gdb.tex
+++ b/Doku/gdb.tex
@@ -1,3 +1,4 @@
 \subsection{GNU Debugger}
 Der GNU Debugger \texttt{gdb} ist ein weiteres Werkzeug zum Debuggen von Programmen.
-Eine Anleitung ist unter \texttt{man gdb} zu finden.
+Eine kurze Anleitung ist unter \texttt{man gdb} zu finden.
+Ein ausführliche Dokumentation gibt es unter \url{https://sourceware.org/gdb/current/onlinedocs/gdb/index.html}.
diff --git a/Doku/gnuplot.tex b/Doku/gnuplot.tex
index 60a61719455a574145976ae0afde1d8025fd737c..ace893a4cbc58c0c2fa1bb3cb45ba3665409c30b 100644
--- a/Doku/gnuplot.tex
+++ b/Doku/gnuplot.tex
@@ -1,6 +1,6 @@
 \subsection{gnuplot}
 Gnuplot ist eine skriptbasierte Anwendung zum Plotten von zwei- oder dreidimensionalen Funktionen und Daten, die auch einen interaktiven Kommandozeilenmodus bietet.
-Zum Lernen von gnuplot bietet sich \url{http://www.gnuplot.info/docs/tutorial.pdf} an.
+Zum Lernen von gnuplot bietet sich \url{http://www.gnuplot.info/docs\_5.4/Gnuplot\_5\_4.pdf} an.
 Gnuplot kann Graphen in mehreren Modi, z.B. graphisch in einem Fenster, als ASCII-Art in der Kommandozeile, als PDF, SVG und sogar als \LaTeX{}, ausgeben.
 
 Aufzurufen im Terminal mit:\\
@@ -18,4 +18,10 @@ plot (x/4)**2, sin(x), 1/x
 Die Ausgabe sieht ähnlich wie die folgende aus:\\
 \input{gnuplot_plot}
 
+Mit den folgenden Anweisungen kann die Graphik auch in \Latex-Code exportiert werden.
+\begin{verbatim}
+set terminal cairolatex
+set output "gnuplot_plot.tex"
+\end{verbatim}
+
 \textbf{Achtung:} Gnuplot ist leider keine freie Software im Sinne der FSFE\footnote{Free Software Foundation Europe}, obwohl es GNU im Namen trägt. Im Besonderen enthält seine Lizenz eine Klausel, welche de facto das Verändern und Weitergeben von gnuplot verhindert. Ein größtenteils kompatible, freie Alternative ist \texttt{pyxplot}.
diff --git a/Doku/gnuplot_plot.tex b/Doku/gnuplot_plot.tex
index 34ea3f078e985eae8237daab263f6cbda7221901..9ef7302e5d65673e65c18373ce539397114fe820 100644
--- a/Doku/gnuplot_plot.tex
+++ b/Doku/gnuplot_plot.tex
@@ -1,552 +1,128 @@
-% GNUPLOT: LaTeX picture
-\setlength{\unitlength}{0.240900pt}
-\ifx\plotpoint\undefined\newsavebox{\plotpoint}\fi
-\begin{picture}(1500,900)(0,0)
-\sbox{\plotpoint}{\rule[-0.200pt]{0.400pt}{0.400pt}}%
-\put(130.0,82.0){\rule[-0.200pt]{4.818pt}{0.400pt}}
-\put(110,82){\makebox(0,0)[r]{$-2$}}
-\put(1419.0,82.0){\rule[-0.200pt]{4.818pt}{0.400pt}}
-\put(130.0,169.0){\rule[-0.200pt]{4.818pt}{0.400pt}}
-\put(110,169){\makebox(0,0)[r]{$-1.5$}}
-\put(1419.0,169.0){\rule[-0.200pt]{4.818pt}{0.400pt}}
-\put(130.0,256.0){\rule[-0.200pt]{4.818pt}{0.400pt}}
-\put(110,256){\makebox(0,0)[r]{$-1$}}
-\put(1419.0,256.0){\rule[-0.200pt]{4.818pt}{0.400pt}}
-\put(130.0,342.0){\rule[-0.200pt]{4.818pt}{0.400pt}}
-\put(110,342){\makebox(0,0)[r]{$-0.5$}}
-\put(1419.0,342.0){\rule[-0.200pt]{4.818pt}{0.400pt}}
-\put(130.0,429.0){\rule[-0.200pt]{4.818pt}{0.400pt}}
-\put(110,429){\makebox(0,0)[r]{$0$}}
-\put(1419.0,429.0){\rule[-0.200pt]{4.818pt}{0.400pt}}
-\put(130.0,516.0){\rule[-0.200pt]{4.818pt}{0.400pt}}
-\put(110,516){\makebox(0,0)[r]{$0.5$}}
-\put(1419.0,516.0){\rule[-0.200pt]{4.818pt}{0.400pt}}
-\put(130.0,603.0){\rule[-0.200pt]{4.818pt}{0.400pt}}
-\put(110,603){\makebox(0,0)[r]{$1$}}
-\put(1419.0,603.0){\rule[-0.200pt]{4.818pt}{0.400pt}}
-\put(130.0,689.0){\rule[-0.200pt]{4.818pt}{0.400pt}}
-\put(110,689){\makebox(0,0)[r]{$1.5$}}
-\put(1419.0,689.0){\rule[-0.200pt]{4.818pt}{0.400pt}}
-\put(130.0,776.0){\rule[-0.200pt]{4.818pt}{0.400pt}}
-\put(110,776){\makebox(0,0)[r]{$2$}}
-\put(1419.0,776.0){\rule[-0.200pt]{4.818pt}{0.400pt}}
-\put(130.0,82.0){\rule[-0.200pt]{0.400pt}{4.818pt}}
-\put(130,41){\makebox(0,0){$-10$}}
-\put(130.0,756.0){\rule[-0.200pt]{0.400pt}{4.818pt}}
-\put(457.0,82.0){\rule[-0.200pt]{0.400pt}{4.818pt}}
-\put(457,41){\makebox(0,0){$-5$}}
-\put(457.0,756.0){\rule[-0.200pt]{0.400pt}{4.818pt}}
-\put(785.0,82.0){\rule[-0.200pt]{0.400pt}{4.818pt}}
-\put(785,41){\makebox(0,0){$0$}}
-\put(785.0,756.0){\rule[-0.200pt]{0.400pt}{4.818pt}}
-\put(1112.0,82.0){\rule[-0.200pt]{0.400pt}{4.818pt}}
-\put(1112,41){\makebox(0,0){$5$}}
-\put(1112.0,756.0){\rule[-0.200pt]{0.400pt}{4.818pt}}
-\put(1439.0,82.0){\rule[-0.200pt]{0.400pt}{4.818pt}}
-\put(1439,41){\makebox(0,0){$10$}}
-\put(1439.0,756.0){\rule[-0.200pt]{0.400pt}{4.818pt}}
-\put(130.0,429.0){\rule[-0.200pt]{315.338pt}{0.400pt}}
-\put(785.0,82.0){\rule[-0.200pt]{0.400pt}{167.185pt}}
-\put(130.0,82.0){\rule[-0.200pt]{0.400pt}{167.185pt}}
-\put(130.0,82.0){\rule[-0.200pt]{315.338pt}{0.400pt}}
-\put(1439.0,82.0){\rule[-0.200pt]{0.400pt}{167.185pt}}
-\put(130.0,776.0){\rule[-0.200pt]{315.338pt}{0.400pt}}
-\put(784,838){\makebox(0,0){Some Math Functions}}
-\put(1279,735){\makebox(0,0)[r]{(x/4)**2}}
-\multiput(414.59,772.74)(0.485,-0.874){11}{\rule{0.117pt}{0.786pt}}
-\multiput(413.17,774.37)(7.000,-10.369){2}{\rule{0.400pt}{0.393pt}}
-\multiput(421.58,760.52)(0.493,-0.933){23}{\rule{0.119pt}{0.838pt}}
-\multiput(420.17,762.26)(13.000,-22.260){2}{\rule{0.400pt}{0.419pt}}
-\multiput(434.58,736.65)(0.493,-0.893){23}{\rule{0.119pt}{0.808pt}}
-\multiput(433.17,738.32)(13.000,-21.324){2}{\rule{0.400pt}{0.404pt}}
-\multiput(447.58,713.98)(0.494,-0.791){25}{\rule{0.119pt}{0.729pt}}
-\multiput(446.17,715.49)(14.000,-20.488){2}{\rule{0.400pt}{0.364pt}}
-\multiput(461.58,691.77)(0.493,-0.853){23}{\rule{0.119pt}{0.777pt}}
-\multiput(460.17,693.39)(13.000,-20.387){2}{\rule{0.400pt}{0.388pt}}
-\multiput(474.58,670.03)(0.493,-0.774){23}{\rule{0.119pt}{0.715pt}}
-\multiput(473.17,671.52)(13.000,-18.515){2}{\rule{0.400pt}{0.358pt}}
-\multiput(487.58,650.16)(0.493,-0.734){23}{\rule{0.119pt}{0.685pt}}
-\multiput(486.17,651.58)(13.000,-17.579){2}{\rule{0.400pt}{0.342pt}}
-\multiput(500.58,631.16)(0.493,-0.734){23}{\rule{0.119pt}{0.685pt}}
-\multiput(499.17,632.58)(13.000,-17.579){2}{\rule{0.400pt}{0.342pt}}
-\multiput(513.58,612.45)(0.494,-0.644){25}{\rule{0.119pt}{0.614pt}}
-\multiput(512.17,613.73)(14.000,-16.725){2}{\rule{0.400pt}{0.307pt}}
-\multiput(527.58,594.41)(0.493,-0.655){23}{\rule{0.119pt}{0.623pt}}
-\multiput(526.17,595.71)(13.000,-15.707){2}{\rule{0.400pt}{0.312pt}}
-\multiput(540.58,577.67)(0.493,-0.576){23}{\rule{0.119pt}{0.562pt}}
-\multiput(539.17,578.83)(13.000,-13.834){2}{\rule{0.400pt}{0.281pt}}
-\multiput(553.58,562.54)(0.493,-0.616){23}{\rule{0.119pt}{0.592pt}}
-\multiput(552.17,563.77)(13.000,-14.771){2}{\rule{0.400pt}{0.296pt}}
-\multiput(566.00,547.92)(0.497,-0.494){25}{\rule{0.500pt}{0.119pt}}
-\multiput(566.00,548.17)(12.962,-14.000){2}{\rule{0.250pt}{0.400pt}}
-\multiput(580.00,533.92)(0.497,-0.493){23}{\rule{0.500pt}{0.119pt}}
-\multiput(580.00,534.17)(11.962,-13.000){2}{\rule{0.250pt}{0.400pt}}
-\multiput(593.00,520.92)(0.539,-0.492){21}{\rule{0.533pt}{0.119pt}}
-\multiput(593.00,521.17)(11.893,-12.000){2}{\rule{0.267pt}{0.400pt}}
-\multiput(606.00,508.92)(0.539,-0.492){21}{\rule{0.533pt}{0.119pt}}
-\multiput(606.00,509.17)(11.893,-12.000){2}{\rule{0.267pt}{0.400pt}}
-\multiput(619.00,496.92)(0.652,-0.491){17}{\rule{0.620pt}{0.118pt}}
-\multiput(619.00,497.17)(11.713,-10.000){2}{\rule{0.310pt}{0.400pt}}
-\multiput(632.00,486.92)(0.704,-0.491){17}{\rule{0.660pt}{0.118pt}}
-\multiput(632.00,487.17)(12.630,-10.000){2}{\rule{0.330pt}{0.400pt}}
-\multiput(646.00,476.93)(0.728,-0.489){15}{\rule{0.678pt}{0.118pt}}
-\multiput(646.00,477.17)(11.593,-9.000){2}{\rule{0.339pt}{0.400pt}}
-\multiput(659.00,467.93)(0.824,-0.488){13}{\rule{0.750pt}{0.117pt}}
-\multiput(659.00,468.17)(11.443,-8.000){2}{\rule{0.375pt}{0.400pt}}
-\multiput(672.00,459.93)(0.950,-0.485){11}{\rule{0.843pt}{0.117pt}}
-\multiput(672.00,460.17)(11.251,-7.000){2}{\rule{0.421pt}{0.400pt}}
-\multiput(685.00,452.93)(1.214,-0.482){9}{\rule{1.033pt}{0.116pt}}
-\multiput(685.00,453.17)(11.855,-6.000){2}{\rule{0.517pt}{0.400pt}}
-\multiput(699.00,446.93)(1.123,-0.482){9}{\rule{0.967pt}{0.116pt}}
-\multiput(699.00,447.17)(10.994,-6.000){2}{\rule{0.483pt}{0.400pt}}
-\multiput(712.00,440.94)(1.797,-0.468){5}{\rule{1.400pt}{0.113pt}}
-\multiput(712.00,441.17)(10.094,-4.000){2}{\rule{0.700pt}{0.400pt}}
-\multiput(725.00,436.94)(1.797,-0.468){5}{\rule{1.400pt}{0.113pt}}
-\multiput(725.00,437.17)(10.094,-4.000){2}{\rule{0.700pt}{0.400pt}}
-\put(738,432.17){\rule{2.700pt}{0.400pt}}
-\multiput(738.00,433.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}}
-\put(751,430.17){\rule{2.900pt}{0.400pt}}
-\multiput(751.00,431.17)(7.981,-2.000){2}{\rule{1.450pt}{0.400pt}}
-\put(765,428.67){\rule{3.132pt}{0.400pt}}
-\multiput(765.00,429.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(1299.0,735.0){\rule[-0.200pt]{24.090pt}{0.400pt}}
-\put(791,428.67){\rule{3.132pt}{0.400pt}}
-\multiput(791.00,428.17)(6.500,1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(804,430.17){\rule{2.900pt}{0.400pt}}
-\multiput(804.00,429.17)(7.981,2.000){2}{\rule{1.450pt}{0.400pt}}
-\put(818,432.17){\rule{2.700pt}{0.400pt}}
-\multiput(818.00,431.17)(7.396,2.000){2}{\rule{1.350pt}{0.400pt}}
-\multiput(831.00,434.60)(1.797,0.468){5}{\rule{1.400pt}{0.113pt}}
-\multiput(831.00,433.17)(10.094,4.000){2}{\rule{0.700pt}{0.400pt}}
-\multiput(844.00,438.60)(1.797,0.468){5}{\rule{1.400pt}{0.113pt}}
-\multiput(844.00,437.17)(10.094,4.000){2}{\rule{0.700pt}{0.400pt}}
-\multiput(857.00,442.59)(1.123,0.482){9}{\rule{0.967pt}{0.116pt}}
-\multiput(857.00,441.17)(10.994,6.000){2}{\rule{0.483pt}{0.400pt}}
-\multiput(870.00,448.59)(1.214,0.482){9}{\rule{1.033pt}{0.116pt}}
-\multiput(870.00,447.17)(11.855,6.000){2}{\rule{0.517pt}{0.400pt}}
-\multiput(884.00,454.59)(0.950,0.485){11}{\rule{0.843pt}{0.117pt}}
-\multiput(884.00,453.17)(11.251,7.000){2}{\rule{0.421pt}{0.400pt}}
-\multiput(897.00,461.59)(0.824,0.488){13}{\rule{0.750pt}{0.117pt}}
-\multiput(897.00,460.17)(11.443,8.000){2}{\rule{0.375pt}{0.400pt}}
-\multiput(910.00,469.59)(0.728,0.489){15}{\rule{0.678pt}{0.118pt}}
-\multiput(910.00,468.17)(11.593,9.000){2}{\rule{0.339pt}{0.400pt}}
-\multiput(923.00,478.58)(0.704,0.491){17}{\rule{0.660pt}{0.118pt}}
-\multiput(923.00,477.17)(12.630,10.000){2}{\rule{0.330pt}{0.400pt}}
-\multiput(937.00,488.58)(0.652,0.491){17}{\rule{0.620pt}{0.118pt}}
-\multiput(937.00,487.17)(11.713,10.000){2}{\rule{0.310pt}{0.400pt}}
-\multiput(950.00,498.58)(0.539,0.492){21}{\rule{0.533pt}{0.119pt}}
-\multiput(950.00,497.17)(11.893,12.000){2}{\rule{0.267pt}{0.400pt}}
-\multiput(963.00,510.58)(0.539,0.492){21}{\rule{0.533pt}{0.119pt}}
-\multiput(963.00,509.17)(11.893,12.000){2}{\rule{0.267pt}{0.400pt}}
-\multiput(976.00,522.58)(0.497,0.493){23}{\rule{0.500pt}{0.119pt}}
-\multiput(976.00,521.17)(11.962,13.000){2}{\rule{0.250pt}{0.400pt}}
-\multiput(989.00,535.58)(0.497,0.494){25}{\rule{0.500pt}{0.119pt}}
-\multiput(989.00,534.17)(12.962,14.000){2}{\rule{0.250pt}{0.400pt}}
-\multiput(1003.58,549.00)(0.493,0.616){23}{\rule{0.119pt}{0.592pt}}
-\multiput(1002.17,549.00)(13.000,14.771){2}{\rule{0.400pt}{0.296pt}}
-\multiput(1016.58,565.00)(0.493,0.576){23}{\rule{0.119pt}{0.562pt}}
-\multiput(1015.17,565.00)(13.000,13.834){2}{\rule{0.400pt}{0.281pt}}
-\multiput(1029.58,580.00)(0.493,0.655){23}{\rule{0.119pt}{0.623pt}}
-\multiput(1028.17,580.00)(13.000,15.707){2}{\rule{0.400pt}{0.312pt}}
-\multiput(1042.58,597.00)(0.494,0.644){25}{\rule{0.119pt}{0.614pt}}
-\multiput(1041.17,597.00)(14.000,16.725){2}{\rule{0.400pt}{0.307pt}}
-\multiput(1056.58,615.00)(0.493,0.734){23}{\rule{0.119pt}{0.685pt}}
-\multiput(1055.17,615.00)(13.000,17.579){2}{\rule{0.400pt}{0.342pt}}
-\multiput(1069.58,634.00)(0.493,0.734){23}{\rule{0.119pt}{0.685pt}}
-\multiput(1068.17,634.00)(13.000,17.579){2}{\rule{0.400pt}{0.342pt}}
-\multiput(1082.58,653.00)(0.493,0.774){23}{\rule{0.119pt}{0.715pt}}
-\multiput(1081.17,653.00)(13.000,18.515){2}{\rule{0.400pt}{0.358pt}}
-\multiput(1095.58,673.00)(0.493,0.853){23}{\rule{0.119pt}{0.777pt}}
-\multiput(1094.17,673.00)(13.000,20.387){2}{\rule{0.400pt}{0.388pt}}
-\multiput(1108.58,695.00)(0.494,0.791){25}{\rule{0.119pt}{0.729pt}}
-\multiput(1107.17,695.00)(14.000,20.488){2}{\rule{0.400pt}{0.364pt}}
-\multiput(1122.58,717.00)(0.493,0.893){23}{\rule{0.119pt}{0.808pt}}
-\multiput(1121.17,717.00)(13.000,21.324){2}{\rule{0.400pt}{0.404pt}}
-\multiput(1135.58,740.00)(0.493,0.933){23}{\rule{0.119pt}{0.838pt}}
-\multiput(1134.17,740.00)(13.000,22.260){2}{\rule{0.400pt}{0.419pt}}
-\multiput(1148.59,764.00)(0.485,0.874){11}{\rule{0.117pt}{0.786pt}}
-\multiput(1147.17,764.00)(7.000,10.369){2}{\rule{0.400pt}{0.393pt}}
-\put(778.0,429.0){\rule[-0.200pt]{3.132pt}{0.400pt}}
-\put(1279,694){\makebox(0,0)[r]{sin(x)}}
-\put(1299.0,694.0){\rule[-0.200pt]{24.090pt}{0.400pt}}
-\put(130,523){\usebox{\plotpoint}}
-\multiput(130.58,518.63)(0.493,-1.210){23}{\rule{0.119pt}{1.054pt}}
-\multiput(129.17,520.81)(13.000,-28.813){2}{\rule{0.400pt}{0.527pt}}
-\multiput(143.58,487.37)(0.493,-1.290){23}{\rule{0.119pt}{1.115pt}}
-\multiput(142.17,489.68)(13.000,-30.685){2}{\rule{0.400pt}{0.558pt}}
-\multiput(156.58,454.43)(0.494,-1.268){25}{\rule{0.119pt}{1.100pt}}
-\multiput(155.17,456.72)(14.000,-32.717){2}{\rule{0.400pt}{0.550pt}}
-\multiput(170.58,419.11)(0.493,-1.369){23}{\rule{0.119pt}{1.177pt}}
-\multiput(169.17,421.56)(13.000,-32.557){2}{\rule{0.400pt}{0.588pt}}
-\multiput(183.58,384.37)(0.493,-1.290){23}{\rule{0.119pt}{1.115pt}}
-\multiput(182.17,386.68)(13.000,-30.685){2}{\rule{0.400pt}{0.558pt}}
-\multiput(196.58,351.75)(0.493,-1.171){23}{\rule{0.119pt}{1.023pt}}
-\multiput(195.17,353.88)(13.000,-27.877){2}{\rule{0.400pt}{0.512pt}}
-\multiput(209.58,322.50)(0.494,-0.938){25}{\rule{0.119pt}{0.843pt}}
-\multiput(208.17,324.25)(14.000,-24.251){2}{\rule{0.400pt}{0.421pt}}
-\multiput(223.58,296.90)(0.493,-0.814){23}{\rule{0.119pt}{0.746pt}}
-\multiput(222.17,298.45)(13.000,-19.451){2}{\rule{0.400pt}{0.373pt}}
-\multiput(236.58,276.80)(0.493,-0.536){23}{\rule{0.119pt}{0.531pt}}
-\multiput(235.17,277.90)(13.000,-12.898){2}{\rule{0.400pt}{0.265pt}}
-\multiput(249.00,263.93)(0.824,-0.488){13}{\rule{0.750pt}{0.117pt}}
-\multiput(249.00,264.17)(11.443,-8.000){2}{\rule{0.375pt}{0.400pt}}
-\put(262,255.67){\rule{3.132pt}{0.400pt}}
-\multiput(262.00,256.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\multiput(275.00,256.59)(1.214,0.482){9}{\rule{1.033pt}{0.116pt}}
-\multiput(275.00,255.17)(11.855,6.000){2}{\rule{0.517pt}{0.400pt}}
-\multiput(289.00,262.58)(0.497,0.493){23}{\rule{0.500pt}{0.119pt}}
-\multiput(289.00,261.17)(11.962,13.000){2}{\rule{0.250pt}{0.400pt}}
-\multiput(302.58,275.00)(0.493,0.734){23}{\rule{0.119pt}{0.685pt}}
-\multiput(301.17,275.00)(13.000,17.579){2}{\rule{0.400pt}{0.342pt}}
-\multiput(315.58,294.00)(0.493,0.972){23}{\rule{0.119pt}{0.869pt}}
-\multiput(314.17,294.00)(13.000,23.196){2}{\rule{0.400pt}{0.435pt}}
-\multiput(328.58,319.00)(0.494,1.048){25}{\rule{0.119pt}{0.929pt}}
-\multiput(327.17,319.00)(14.000,27.073){2}{\rule{0.400pt}{0.464pt}}
-\multiput(342.58,348.00)(0.493,1.290){23}{\rule{0.119pt}{1.115pt}}
-\multiput(341.17,348.00)(13.000,30.685){2}{\rule{0.400pt}{0.558pt}}
-\multiput(355.58,381.00)(0.493,1.329){23}{\rule{0.119pt}{1.146pt}}
-\multiput(354.17,381.00)(13.000,31.621){2}{\rule{0.400pt}{0.573pt}}
-\multiput(368.58,415.00)(0.493,1.369){23}{\rule{0.119pt}{1.177pt}}
-\multiput(367.17,415.00)(13.000,32.557){2}{\rule{0.400pt}{0.588pt}}
-\multiput(381.58,450.00)(0.493,1.329){23}{\rule{0.119pt}{1.146pt}}
-\multiput(380.17,450.00)(13.000,31.621){2}{\rule{0.400pt}{0.573pt}}
-\multiput(394.58,484.00)(0.494,1.158){25}{\rule{0.119pt}{1.014pt}}
-\multiput(393.17,484.00)(14.000,29.895){2}{\rule{0.400pt}{0.507pt}}
-\multiput(408.58,516.00)(0.493,1.091){23}{\rule{0.119pt}{0.962pt}}
-\multiput(407.17,516.00)(13.000,26.004){2}{\rule{0.400pt}{0.481pt}}
-\multiput(421.58,544.00)(0.493,0.933){23}{\rule{0.119pt}{0.838pt}}
-\multiput(420.17,544.00)(13.000,22.260){2}{\rule{0.400pt}{0.419pt}}
-\multiput(434.58,568.00)(0.493,0.695){23}{\rule{0.119pt}{0.654pt}}
-\multiput(433.17,568.00)(13.000,16.643){2}{\rule{0.400pt}{0.327pt}}
-\multiput(447.00,586.58)(0.582,0.492){21}{\rule{0.567pt}{0.119pt}}
-\multiput(447.00,585.17)(12.824,12.000){2}{\rule{0.283pt}{0.400pt}}
-\multiput(461.00,598.60)(1.797,0.468){5}{\rule{1.400pt}{0.113pt}}
-\multiput(461.00,597.17)(10.094,4.000){2}{\rule{0.700pt}{0.400pt}}
-\put(474,600.17){\rule{2.700pt}{0.400pt}}
-\multiput(474.00,601.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}}
-\multiput(487.00,598.93)(0.728,-0.489){15}{\rule{0.678pt}{0.118pt}}
-\multiput(487.00,599.17)(11.593,-9.000){2}{\rule{0.339pt}{0.400pt}}
-\multiput(500.58,588.54)(0.493,-0.616){23}{\rule{0.119pt}{0.592pt}}
-\multiput(499.17,589.77)(13.000,-14.771){2}{\rule{0.400pt}{0.296pt}}
-\multiput(513.58,571.98)(0.494,-0.791){25}{\rule{0.119pt}{0.729pt}}
-\multiput(512.17,573.49)(14.000,-20.488){2}{\rule{0.400pt}{0.364pt}}
-\multiput(527.58,549.14)(0.493,-1.052){23}{\rule{0.119pt}{0.931pt}}
-\multiput(526.17,551.07)(13.000,-25.068){2}{\rule{0.400pt}{0.465pt}}
-\multiput(540.58,521.75)(0.493,-1.171){23}{\rule{0.119pt}{1.023pt}}
-\multiput(539.17,523.88)(13.000,-27.877){2}{\rule{0.400pt}{0.512pt}}
-\multiput(553.58,491.24)(0.493,-1.329){23}{\rule{0.119pt}{1.146pt}}
-\multiput(552.17,493.62)(13.000,-31.621){2}{\rule{0.400pt}{0.573pt}}
-\multiput(566.58,457.43)(0.494,-1.268){25}{\rule{0.119pt}{1.100pt}}
-\multiput(565.17,459.72)(14.000,-32.717){2}{\rule{0.400pt}{0.550pt}}
-\multiput(580.58,422.11)(0.493,-1.369){23}{\rule{0.119pt}{1.177pt}}
-\multiput(579.17,424.56)(13.000,-32.557){2}{\rule{0.400pt}{0.588pt}}
-\multiput(593.58,387.37)(0.493,-1.290){23}{\rule{0.119pt}{1.115pt}}
-\multiput(592.17,389.68)(13.000,-30.685){2}{\rule{0.400pt}{0.558pt}}
-\multiput(606.58,354.75)(0.493,-1.171){23}{\rule{0.119pt}{1.023pt}}
-\multiput(605.17,356.88)(13.000,-27.877){2}{\rule{0.400pt}{0.512pt}}
-\multiput(619.58,325.14)(0.493,-1.052){23}{\rule{0.119pt}{0.931pt}}
-\multiput(618.17,327.07)(13.000,-25.068){2}{\rule{0.400pt}{0.465pt}}
-\multiput(632.58,299.09)(0.494,-0.754){25}{\rule{0.119pt}{0.700pt}}
-\multiput(631.17,300.55)(14.000,-19.547){2}{\rule{0.400pt}{0.350pt}}
-\multiput(646.58,278.67)(0.493,-0.576){23}{\rule{0.119pt}{0.562pt}}
-\multiput(645.17,279.83)(13.000,-13.834){2}{\rule{0.400pt}{0.281pt}}
-\multiput(659.00,264.93)(0.728,-0.489){15}{\rule{0.678pt}{0.118pt}}
-\multiput(659.00,265.17)(11.593,-9.000){2}{\rule{0.339pt}{0.400pt}}
-\put(672,255.67){\rule{3.132pt}{0.400pt}}
-\multiput(672.00,256.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\multiput(685.00,256.59)(1.489,0.477){7}{\rule{1.220pt}{0.115pt}}
-\multiput(685.00,255.17)(11.468,5.000){2}{\rule{0.610pt}{0.400pt}}
-\multiput(699.00,261.58)(0.497,0.493){23}{\rule{0.500pt}{0.119pt}}
-\multiput(699.00,260.17)(11.962,13.000){2}{\rule{0.250pt}{0.400pt}}
-\multiput(712.58,274.00)(0.493,0.695){23}{\rule{0.119pt}{0.654pt}}
-\multiput(711.17,274.00)(13.000,16.643){2}{\rule{0.400pt}{0.327pt}}
-\multiput(725.58,292.00)(0.493,0.933){23}{\rule{0.119pt}{0.838pt}}
-\multiput(724.17,292.00)(13.000,22.260){2}{\rule{0.400pt}{0.419pt}}
-\multiput(738.58,316.00)(0.493,1.131){23}{\rule{0.119pt}{0.992pt}}
-\multiput(737.17,316.00)(13.000,26.940){2}{\rule{0.400pt}{0.496pt}}
-\multiput(751.58,345.00)(0.494,1.158){25}{\rule{0.119pt}{1.014pt}}
-\multiput(750.17,345.00)(14.000,29.895){2}{\rule{0.400pt}{0.507pt}}
-\multiput(765.58,377.00)(0.493,1.369){23}{\rule{0.119pt}{1.177pt}}
-\multiput(764.17,377.00)(13.000,32.557){2}{\rule{0.400pt}{0.588pt}}
-\multiput(778.58,412.00)(0.493,1.329){23}{\rule{0.119pt}{1.146pt}}
-\multiput(777.17,412.00)(13.000,31.621){2}{\rule{0.400pt}{0.573pt}}
-\multiput(791.58,446.00)(0.493,1.369){23}{\rule{0.119pt}{1.177pt}}
-\multiput(790.17,446.00)(13.000,32.557){2}{\rule{0.400pt}{0.588pt}}
-\multiput(804.58,481.00)(0.494,1.158){25}{\rule{0.119pt}{1.014pt}}
-\multiput(803.17,481.00)(14.000,29.895){2}{\rule{0.400pt}{0.507pt}}
-\multiput(818.58,513.00)(0.493,1.131){23}{\rule{0.119pt}{0.992pt}}
-\multiput(817.17,513.00)(13.000,26.940){2}{\rule{0.400pt}{0.496pt}}
-\multiput(831.58,542.00)(0.493,0.933){23}{\rule{0.119pt}{0.838pt}}
-\multiput(830.17,542.00)(13.000,22.260){2}{\rule{0.400pt}{0.419pt}}
-\multiput(844.58,566.00)(0.493,0.695){23}{\rule{0.119pt}{0.654pt}}
-\multiput(843.17,566.00)(13.000,16.643){2}{\rule{0.400pt}{0.327pt}}
-\multiput(857.00,584.58)(0.497,0.493){23}{\rule{0.500pt}{0.119pt}}
-\multiput(857.00,583.17)(11.962,13.000){2}{\rule{0.250pt}{0.400pt}}
-\multiput(870.00,597.59)(1.489,0.477){7}{\rule{1.220pt}{0.115pt}}
-\multiput(870.00,596.17)(11.468,5.000){2}{\rule{0.610pt}{0.400pt}}
-\put(884,600.67){\rule{3.132pt}{0.400pt}}
-\multiput(884.00,601.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\multiput(897.00,599.93)(0.728,-0.489){15}{\rule{0.678pt}{0.118pt}}
-\multiput(897.00,600.17)(11.593,-9.000){2}{\rule{0.339pt}{0.400pt}}
-\multiput(910.58,589.67)(0.493,-0.576){23}{\rule{0.119pt}{0.562pt}}
-\multiput(909.17,590.83)(13.000,-13.834){2}{\rule{0.400pt}{0.281pt}}
-\multiput(923.58,574.09)(0.494,-0.754){25}{\rule{0.119pt}{0.700pt}}
-\multiput(922.17,575.55)(14.000,-19.547){2}{\rule{0.400pt}{0.350pt}}
-\multiput(937.58,552.14)(0.493,-1.052){23}{\rule{0.119pt}{0.931pt}}
-\multiput(936.17,554.07)(13.000,-25.068){2}{\rule{0.400pt}{0.465pt}}
-\multiput(950.58,524.75)(0.493,-1.171){23}{\rule{0.119pt}{1.023pt}}
-\multiput(949.17,526.88)(13.000,-27.877){2}{\rule{0.400pt}{0.512pt}}
-\multiput(963.58,494.37)(0.493,-1.290){23}{\rule{0.119pt}{1.115pt}}
-\multiput(962.17,496.68)(13.000,-30.685){2}{\rule{0.400pt}{0.558pt}}
-\multiput(976.58,461.11)(0.493,-1.369){23}{\rule{0.119pt}{1.177pt}}
-\multiput(975.17,463.56)(13.000,-32.557){2}{\rule{0.400pt}{0.588pt}}
-\multiput(989.58,426.43)(0.494,-1.268){25}{\rule{0.119pt}{1.100pt}}
-\multiput(988.17,428.72)(14.000,-32.717){2}{\rule{0.400pt}{0.550pt}}
-\multiput(1003.58,391.24)(0.493,-1.329){23}{\rule{0.119pt}{1.146pt}}
-\multiput(1002.17,393.62)(13.000,-31.621){2}{\rule{0.400pt}{0.573pt}}
-\multiput(1016.58,357.75)(0.493,-1.171){23}{\rule{0.119pt}{1.023pt}}
-\multiput(1015.17,359.88)(13.000,-27.877){2}{\rule{0.400pt}{0.512pt}}
-\multiput(1029.58,328.14)(0.493,-1.052){23}{\rule{0.119pt}{0.931pt}}
-\multiput(1028.17,330.07)(13.000,-25.068){2}{\rule{0.400pt}{0.465pt}}
-\multiput(1042.58,301.98)(0.494,-0.791){25}{\rule{0.119pt}{0.729pt}}
-\multiput(1041.17,303.49)(14.000,-20.488){2}{\rule{0.400pt}{0.364pt}}
-\multiput(1056.58,280.54)(0.493,-0.616){23}{\rule{0.119pt}{0.592pt}}
-\multiput(1055.17,281.77)(13.000,-14.771){2}{\rule{0.400pt}{0.296pt}}
-\multiput(1069.00,265.93)(0.728,-0.489){15}{\rule{0.678pt}{0.118pt}}
-\multiput(1069.00,266.17)(11.593,-9.000){2}{\rule{0.339pt}{0.400pt}}
-\put(1082,256.17){\rule{2.700pt}{0.400pt}}
-\multiput(1082.00,257.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}}
-\multiput(1095.00,256.60)(1.797,0.468){5}{\rule{1.400pt}{0.113pt}}
-\multiput(1095.00,255.17)(10.094,4.000){2}{\rule{0.700pt}{0.400pt}}
-\multiput(1108.00,260.58)(0.582,0.492){21}{\rule{0.567pt}{0.119pt}}
-\multiput(1108.00,259.17)(12.824,12.000){2}{\rule{0.283pt}{0.400pt}}
-\multiput(1122.58,272.00)(0.493,0.695){23}{\rule{0.119pt}{0.654pt}}
-\multiput(1121.17,272.00)(13.000,16.643){2}{\rule{0.400pt}{0.327pt}}
-\multiput(1135.58,290.00)(0.493,0.933){23}{\rule{0.119pt}{0.838pt}}
-\multiput(1134.17,290.00)(13.000,22.260){2}{\rule{0.400pt}{0.419pt}}
-\multiput(1148.58,314.00)(0.493,1.091){23}{\rule{0.119pt}{0.962pt}}
-\multiput(1147.17,314.00)(13.000,26.004){2}{\rule{0.400pt}{0.481pt}}
-\multiput(1161.58,342.00)(0.494,1.158){25}{\rule{0.119pt}{1.014pt}}
-\multiput(1160.17,342.00)(14.000,29.895){2}{\rule{0.400pt}{0.507pt}}
-\multiput(1175.58,374.00)(0.493,1.329){23}{\rule{0.119pt}{1.146pt}}
-\multiput(1174.17,374.00)(13.000,31.621){2}{\rule{0.400pt}{0.573pt}}
-\multiput(1188.58,408.00)(0.493,1.369){23}{\rule{0.119pt}{1.177pt}}
-\multiput(1187.17,408.00)(13.000,32.557){2}{\rule{0.400pt}{0.588pt}}
-\multiput(1201.58,443.00)(0.493,1.329){23}{\rule{0.119pt}{1.146pt}}
-\multiput(1200.17,443.00)(13.000,31.621){2}{\rule{0.400pt}{0.573pt}}
-\multiput(1214.58,477.00)(0.493,1.290){23}{\rule{0.119pt}{1.115pt}}
-\multiput(1213.17,477.00)(13.000,30.685){2}{\rule{0.400pt}{0.558pt}}
-\multiput(1227.58,510.00)(0.494,1.048){25}{\rule{0.119pt}{0.929pt}}
-\multiput(1226.17,510.00)(14.000,27.073){2}{\rule{0.400pt}{0.464pt}}
-\multiput(1241.58,539.00)(0.493,0.972){23}{\rule{0.119pt}{0.869pt}}
-\multiput(1240.17,539.00)(13.000,23.196){2}{\rule{0.400pt}{0.435pt}}
-\multiput(1254.58,564.00)(0.493,0.734){23}{\rule{0.119pt}{0.685pt}}
-\multiput(1253.17,564.00)(13.000,17.579){2}{\rule{0.400pt}{0.342pt}}
-\multiput(1267.00,583.58)(0.497,0.493){23}{\rule{0.500pt}{0.119pt}}
-\multiput(1267.00,582.17)(11.962,13.000){2}{\rule{0.250pt}{0.400pt}}
-\multiput(1280.00,596.59)(1.214,0.482){9}{\rule{1.033pt}{0.116pt}}
-\multiput(1280.00,595.17)(11.855,6.000){2}{\rule{0.517pt}{0.400pt}}
-\put(1294,600.67){\rule{3.132pt}{0.400pt}}
-\multiput(1294.00,601.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\multiput(1307.00,599.93)(0.824,-0.488){13}{\rule{0.750pt}{0.117pt}}
-\multiput(1307.00,600.17)(11.443,-8.000){2}{\rule{0.375pt}{0.400pt}}
-\multiput(1320.58,590.80)(0.493,-0.536){23}{\rule{0.119pt}{0.531pt}}
-\multiput(1319.17,591.90)(13.000,-12.898){2}{\rule{0.400pt}{0.265pt}}
-\multiput(1333.58,575.90)(0.493,-0.814){23}{\rule{0.119pt}{0.746pt}}
-\multiput(1332.17,577.45)(13.000,-19.451){2}{\rule{0.400pt}{0.373pt}}
-\multiput(1346.58,554.50)(0.494,-0.938){25}{\rule{0.119pt}{0.843pt}}
-\multiput(1345.17,556.25)(14.000,-24.251){2}{\rule{0.400pt}{0.421pt}}
-\multiput(1360.58,527.75)(0.493,-1.171){23}{\rule{0.119pt}{1.023pt}}
-\multiput(1359.17,529.88)(13.000,-27.877){2}{\rule{0.400pt}{0.512pt}}
-\multiput(1373.58,497.37)(0.493,-1.290){23}{\rule{0.119pt}{1.115pt}}
-\multiput(1372.17,499.68)(13.000,-30.685){2}{\rule{0.400pt}{0.558pt}}
-\multiput(1386.58,464.11)(0.493,-1.369){23}{\rule{0.119pt}{1.177pt}}
-\multiput(1385.17,466.56)(13.000,-32.557){2}{\rule{0.400pt}{0.588pt}}
-\multiput(1399.58,429.43)(0.494,-1.268){25}{\rule{0.119pt}{1.100pt}}
-\multiput(1398.17,431.72)(14.000,-32.717){2}{\rule{0.400pt}{0.550pt}}
-\multiput(1413.58,394.37)(0.493,-1.290){23}{\rule{0.119pt}{1.115pt}}
-\multiput(1412.17,396.68)(13.000,-30.685){2}{\rule{0.400pt}{0.558pt}}
-\multiput(1426.58,361.63)(0.493,-1.210){23}{\rule{0.119pt}{1.054pt}}
-\multiput(1425.17,363.81)(13.000,-28.813){2}{\rule{0.400pt}{0.527pt}}
-\put(1279,653){\makebox(0,0)[r]{1/x}}
-\put(1299.0,653.0){\rule[-0.200pt]{24.090pt}{0.400pt}}
-\put(130,412){\usebox{\plotpoint}}
-\put(130,410.67){\rule{3.132pt}{0.400pt}}
-\multiput(130.00,411.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(170,409.67){\rule{3.132pt}{0.400pt}}
-\multiput(170.00,410.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(143.0,411.0){\rule[-0.200pt]{6.504pt}{0.400pt}}
-\put(196,408.67){\rule{3.132pt}{0.400pt}}
-\multiput(196.00,409.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(183.0,410.0){\rule[-0.200pt]{3.132pt}{0.400pt}}
-\put(223,407.67){\rule{3.132pt}{0.400pt}}
-\multiput(223.00,408.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(209.0,409.0){\rule[-0.200pt]{3.373pt}{0.400pt}}
-\put(249,406.67){\rule{3.132pt}{0.400pt}}
-\multiput(249.00,407.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(236.0,408.0){\rule[-0.200pt]{3.132pt}{0.400pt}}
-\put(275,405.67){\rule{3.373pt}{0.400pt}}
-\multiput(275.00,406.17)(7.000,-1.000){2}{\rule{1.686pt}{0.400pt}}
-\put(289,404.67){\rule{3.132pt}{0.400pt}}
-\multiput(289.00,405.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(262.0,407.0){\rule[-0.200pt]{3.132pt}{0.400pt}}
-\put(315,403.67){\rule{3.132pt}{0.400pt}}
-\multiput(315.00,404.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(328,402.67){\rule{3.373pt}{0.400pt}}
-\multiput(328.00,403.17)(7.000,-1.000){2}{\rule{1.686pt}{0.400pt}}
-\put(302.0,405.0){\rule[-0.200pt]{3.132pt}{0.400pt}}
-\put(355,401.67){\rule{3.132pt}{0.400pt}}
-\multiput(355.00,402.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(368,400.67){\rule{3.132pt}{0.400pt}}
-\multiput(368.00,401.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(381,399.67){\rule{3.132pt}{0.400pt}}
-\multiput(381.00,400.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(394,398.67){\rule{3.373pt}{0.400pt}}
-\multiput(394.00,399.17)(7.000,-1.000){2}{\rule{1.686pt}{0.400pt}}
-\put(408,397.67){\rule{3.132pt}{0.400pt}}
-\multiput(408.00,398.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(421,396.67){\rule{3.132pt}{0.400pt}}
-\multiput(421.00,397.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(434,395.17){\rule{2.700pt}{0.400pt}}
-\multiput(434.00,396.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}}
-\put(447,393.67){\rule{3.373pt}{0.400pt}}
-\multiput(447.00,394.17)(7.000,-1.000){2}{\rule{1.686pt}{0.400pt}}
-\put(461,392.17){\rule{2.700pt}{0.400pt}}
-\multiput(461.00,393.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}}
-\put(474,390.67){\rule{3.132pt}{0.400pt}}
-\multiput(474.00,391.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(487,389.17){\rule{2.700pt}{0.400pt}}
-\multiput(487.00,390.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}}
-\put(500,387.17){\rule{2.700pt}{0.400pt}}
-\multiput(500.00,388.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}}
-\put(513,385.17){\rule{2.900pt}{0.400pt}}
-\multiput(513.00,386.17)(7.981,-2.000){2}{\rule{1.450pt}{0.400pt}}
-\put(527,383.17){\rule{2.700pt}{0.400pt}}
-\multiput(527.00,384.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}}
-\multiput(540.00,381.95)(2.695,-0.447){3}{\rule{1.833pt}{0.108pt}}
-\multiput(540.00,382.17)(9.195,-3.000){2}{\rule{0.917pt}{0.400pt}}
-\multiput(553.00,378.95)(2.695,-0.447){3}{\rule{1.833pt}{0.108pt}}
-\multiput(553.00,379.17)(9.195,-3.000){2}{\rule{0.917pt}{0.400pt}}
-\multiput(566.00,375.95)(2.918,-0.447){3}{\rule{1.967pt}{0.108pt}}
-\multiput(566.00,376.17)(9.918,-3.000){2}{\rule{0.983pt}{0.400pt}}
-\multiput(580.00,372.94)(1.797,-0.468){5}{\rule{1.400pt}{0.113pt}}
-\multiput(580.00,373.17)(10.094,-4.000){2}{\rule{0.700pt}{0.400pt}}
-\multiput(593.00,368.93)(1.378,-0.477){7}{\rule{1.140pt}{0.115pt}}
-\multiput(593.00,369.17)(10.634,-5.000){2}{\rule{0.570pt}{0.400pt}}
-\multiput(606.00,363.93)(1.378,-0.477){7}{\rule{1.140pt}{0.115pt}}
-\multiput(606.00,364.17)(10.634,-5.000){2}{\rule{0.570pt}{0.400pt}}
-\multiput(619.00,358.93)(1.123,-0.482){9}{\rule{0.967pt}{0.116pt}}
-\multiput(619.00,359.17)(10.994,-6.000){2}{\rule{0.483pt}{0.400pt}}
-\multiput(632.00,352.93)(1.026,-0.485){11}{\rule{0.900pt}{0.117pt}}
-\multiput(632.00,353.17)(12.132,-7.000){2}{\rule{0.450pt}{0.400pt}}
-\multiput(646.00,345.93)(0.824,-0.488){13}{\rule{0.750pt}{0.117pt}}
-\multiput(646.00,346.17)(11.443,-8.000){2}{\rule{0.375pt}{0.400pt}}
-\multiput(659.00,337.92)(0.590,-0.492){19}{\rule{0.573pt}{0.118pt}}
-\multiput(659.00,338.17)(11.811,-11.000){2}{\rule{0.286pt}{0.400pt}}
-\multiput(672.58,325.80)(0.493,-0.536){23}{\rule{0.119pt}{0.531pt}}
-\multiput(671.17,326.90)(13.000,-12.898){2}{\rule{0.400pt}{0.265pt}}
-\multiput(685.58,311.57)(0.494,-0.607){25}{\rule{0.119pt}{0.586pt}}
-\multiput(684.17,312.78)(14.000,-15.784){2}{\rule{0.400pt}{0.293pt}}
-\multiput(699.58,293.52)(0.493,-0.933){23}{\rule{0.119pt}{0.838pt}}
-\multiput(698.17,295.26)(13.000,-22.260){2}{\rule{0.400pt}{0.419pt}}
-\multiput(712.58,268.11)(0.493,-1.369){23}{\rule{0.119pt}{1.177pt}}
-\multiput(711.17,270.56)(13.000,-32.557){2}{\rule{0.400pt}{0.588pt}}
-\multiput(725.58,230.69)(0.493,-2.122){23}{\rule{0.119pt}{1.762pt}}
-\multiput(724.17,234.34)(13.000,-50.344){2}{\rule{0.400pt}{0.881pt}}
-\multiput(738.58,170.94)(0.493,-3.906){23}{\rule{0.119pt}{3.146pt}}
-\multiput(737.17,177.47)(13.000,-92.470){2}{\rule{0.400pt}{1.573pt}}
-\put(750.67,82){\rule{0.400pt}{0.723pt}}
-\multiput(750.17,83.50)(1.000,-1.500){2}{\rule{0.400pt}{0.361pt}}
-\put(816.67,773){\rule{0.400pt}{0.723pt}}
-\multiput(816.17,774.50)(1.000,-1.500){2}{\rule{0.400pt}{0.361pt}}
-\multiput(818.58,759.94)(0.493,-3.906){23}{\rule{0.119pt}{3.146pt}}
-\multiput(817.17,766.47)(13.000,-92.470){2}{\rule{0.400pt}{1.573pt}}
-\multiput(831.58,666.69)(0.493,-2.122){23}{\rule{0.119pt}{1.762pt}}
-\multiput(830.17,670.34)(13.000,-50.344){2}{\rule{0.400pt}{0.881pt}}
-\multiput(844.58,615.11)(0.493,-1.369){23}{\rule{0.119pt}{1.177pt}}
-\multiput(843.17,617.56)(13.000,-32.557){2}{\rule{0.400pt}{0.588pt}}
-\multiput(857.58,581.52)(0.493,-0.933){23}{\rule{0.119pt}{0.838pt}}
-\multiput(856.17,583.26)(13.000,-22.260){2}{\rule{0.400pt}{0.419pt}}
-\multiput(870.58,558.57)(0.494,-0.607){25}{\rule{0.119pt}{0.586pt}}
-\multiput(869.17,559.78)(14.000,-15.784){2}{\rule{0.400pt}{0.293pt}}
-\multiput(884.58,541.80)(0.493,-0.536){23}{\rule{0.119pt}{0.531pt}}
-\multiput(883.17,542.90)(13.000,-12.898){2}{\rule{0.400pt}{0.265pt}}
-\multiput(897.00,528.92)(0.590,-0.492){19}{\rule{0.573pt}{0.118pt}}
-\multiput(897.00,529.17)(11.811,-11.000){2}{\rule{0.286pt}{0.400pt}}
-\multiput(910.00,517.93)(0.824,-0.488){13}{\rule{0.750pt}{0.117pt}}
-\multiput(910.00,518.17)(11.443,-8.000){2}{\rule{0.375pt}{0.400pt}}
-\multiput(923.00,509.93)(1.026,-0.485){11}{\rule{0.900pt}{0.117pt}}
-\multiput(923.00,510.17)(12.132,-7.000){2}{\rule{0.450pt}{0.400pt}}
-\multiput(937.00,502.93)(1.123,-0.482){9}{\rule{0.967pt}{0.116pt}}
-\multiput(937.00,503.17)(10.994,-6.000){2}{\rule{0.483pt}{0.400pt}}
-\multiput(950.00,496.93)(1.378,-0.477){7}{\rule{1.140pt}{0.115pt}}
-\multiput(950.00,497.17)(10.634,-5.000){2}{\rule{0.570pt}{0.400pt}}
-\multiput(963.00,491.93)(1.378,-0.477){7}{\rule{1.140pt}{0.115pt}}
-\multiput(963.00,492.17)(10.634,-5.000){2}{\rule{0.570pt}{0.400pt}}
-\multiput(976.00,486.94)(1.797,-0.468){5}{\rule{1.400pt}{0.113pt}}
-\multiput(976.00,487.17)(10.094,-4.000){2}{\rule{0.700pt}{0.400pt}}
-\multiput(989.00,482.95)(2.918,-0.447){3}{\rule{1.967pt}{0.108pt}}
-\multiput(989.00,483.17)(9.918,-3.000){2}{\rule{0.983pt}{0.400pt}}
-\multiput(1003.00,479.95)(2.695,-0.447){3}{\rule{1.833pt}{0.108pt}}
-\multiput(1003.00,480.17)(9.195,-3.000){2}{\rule{0.917pt}{0.400pt}}
-\multiput(1016.00,476.95)(2.695,-0.447){3}{\rule{1.833pt}{0.108pt}}
-\multiput(1016.00,477.17)(9.195,-3.000){2}{\rule{0.917pt}{0.400pt}}
-\put(1029,473.17){\rule{2.700pt}{0.400pt}}
-\multiput(1029.00,474.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}}
-\put(1042,471.17){\rule{2.900pt}{0.400pt}}
-\multiput(1042.00,472.17)(7.981,-2.000){2}{\rule{1.450pt}{0.400pt}}
-\put(1056,469.17){\rule{2.700pt}{0.400pt}}
-\multiput(1056.00,470.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}}
-\put(1069,467.17){\rule{2.700pt}{0.400pt}}
-\multiput(1069.00,468.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}}
-\put(1082,465.67){\rule{3.132pt}{0.400pt}}
-\multiput(1082.00,466.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(1095,464.17){\rule{2.700pt}{0.400pt}}
-\multiput(1095.00,465.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}}
-\put(1108,462.67){\rule{3.373pt}{0.400pt}}
-\multiput(1108.00,463.17)(7.000,-1.000){2}{\rule{1.686pt}{0.400pt}}
-\put(1122,461.17){\rule{2.700pt}{0.400pt}}
-\multiput(1122.00,462.17)(7.396,-2.000){2}{\rule{1.350pt}{0.400pt}}
-\put(1135,459.67){\rule{3.132pt}{0.400pt}}
-\multiput(1135.00,460.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(1148,458.67){\rule{3.132pt}{0.400pt}}
-\multiput(1148.00,459.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(1161,457.67){\rule{3.373pt}{0.400pt}}
-\multiput(1161.00,458.17)(7.000,-1.000){2}{\rule{1.686pt}{0.400pt}}
-\put(1175,456.67){\rule{3.132pt}{0.400pt}}
-\multiput(1175.00,457.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(1188,455.67){\rule{3.132pt}{0.400pt}}
-\multiput(1188.00,456.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(1201,454.67){\rule{3.132pt}{0.400pt}}
-\multiput(1201.00,455.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(342.0,403.0){\rule[-0.200pt]{3.132pt}{0.400pt}}
-\put(1227,453.67){\rule{3.373pt}{0.400pt}}
-\multiput(1227.00,454.17)(7.000,-1.000){2}{\rule{1.686pt}{0.400pt}}
-\put(1241,452.67){\rule{3.132pt}{0.400pt}}
-\multiput(1241.00,453.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(1214.0,455.0){\rule[-0.200pt]{3.132pt}{0.400pt}}
-\put(1267,451.67){\rule{3.132pt}{0.400pt}}
-\multiput(1267.00,452.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(1280,450.67){\rule{3.373pt}{0.400pt}}
-\multiput(1280.00,451.17)(7.000,-1.000){2}{\rule{1.686pt}{0.400pt}}
-\put(1254.0,453.0){\rule[-0.200pt]{3.132pt}{0.400pt}}
-\put(1307,449.67){\rule{3.132pt}{0.400pt}}
-\multiput(1307.00,450.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(1294.0,451.0){\rule[-0.200pt]{3.132pt}{0.400pt}}
-\put(1333,448.67){\rule{3.132pt}{0.400pt}}
-\multiput(1333.00,449.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(1320.0,450.0){\rule[-0.200pt]{3.132pt}{0.400pt}}
-\put(1360,447.67){\rule{3.132pt}{0.400pt}}
-\multiput(1360.00,448.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(1346.0,449.0){\rule[-0.200pt]{3.373pt}{0.400pt}}
-\put(1386,446.67){\rule{3.132pt}{0.400pt}}
-\multiput(1386.00,447.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(1373.0,448.0){\rule[-0.200pt]{3.132pt}{0.400pt}}
-\put(1426,445.67){\rule{3.132pt}{0.400pt}}
-\multiput(1426.00,446.17)(6.500,-1.000){2}{\rule{1.566pt}{0.400pt}}
-\put(1399.0,447.0){\rule[-0.200pt]{6.504pt}{0.400pt}}
-\put(130.0,82.0){\rule[-0.200pt]{0.400pt}{167.185pt}}
-\put(130.0,82.0){\rule[-0.200pt]{315.338pt}{0.400pt}}
-\put(1439.0,82.0){\rule[-0.200pt]{0.400pt}{167.185pt}}
-\put(130.0,776.0){\rule[-0.200pt]{315.338pt}{0.400pt}}
-\end{picture}
+% GNUPLOT: LaTeX picture with Postscript
+\begingroup
+  \makeatletter
+  \providecommand\color[2][]{%
+    \GenericError{(gnuplot) \space\space\space\@spaces}{%
+      Package color not loaded in conjunction with
+      terminal option `colourtext'%
+    }{See the gnuplot documentation for explanation.%
+    }{Either use 'blacktext' in gnuplot or load the package
+      color.sty in LaTeX.}%
+    \renewcommand\color[2][]{}%
+  }%
+  \providecommand\includegraphics[2][]{%
+    \GenericError{(gnuplot) \space\space\space\@spaces}{%
+      Package graphicx or graphics not loaded%
+    }{See the gnuplot documentation for explanation.%
+    }{The gnuplot epslatex terminal needs graphicx.sty or graphics.sty.}%
+    \renewcommand\includegraphics[2][]{}%
+  }%
+  \providecommand\rotatebox[2]{#2}%
+  \@ifundefined{ifGPcolor}{%
+    \newif\ifGPcolor
+    \GPcolortrue
+  }{}%
+  \@ifundefined{ifGPblacktext}{%
+    \newif\ifGPblacktext
+    \GPblacktexttrue
+  }{}%
+  % define a \g@addto@macro without @ in the name:
+  \let\gplgaddtomacro\g@addto@macro
+  % define empty templates for all commands taking text:
+  \gdef\gplbacktext{}%
+  \gdef\gplfronttext{}%
+  \makeatother
+  \ifGPblacktext
+    % no textcolor at all
+    \def\colorrgb#1{}%
+    \def\colorgray#1{}%
+  \else
+    % gray or color?
+    \ifGPcolor
+      \def\colorrgb#1{\color[rgb]{#1}}%
+      \def\colorgray#1{\color[gray]{#1}}%
+      \expandafter\def\csname LTw\endcsname{\color{white}}%
+      \expandafter\def\csname LTb\endcsname{\color{black}}%
+      \expandafter\def\csname LTa\endcsname{\color{black}}%
+      \expandafter\def\csname LT0\endcsname{\color[rgb]{1,0,0}}%
+      \expandafter\def\csname LT1\endcsname{\color[rgb]{0,1,0}}%
+      \expandafter\def\csname LT2\endcsname{\color[rgb]{0,0,1}}%
+      \expandafter\def\csname LT3\endcsname{\color[rgb]{1,0,1}}%
+      \expandafter\def\csname LT4\endcsname{\color[rgb]{0,1,1}}%
+      \expandafter\def\csname LT5\endcsname{\color[rgb]{1,1,0}}%
+      \expandafter\def\csname LT6\endcsname{\color[rgb]{0,0,0}}%
+      \expandafter\def\csname LT7\endcsname{\color[rgb]{1,0.3,0}}%
+      \expandafter\def\csname LT8\endcsname{\color[rgb]{0.5,0.5,0.5}}%
+    \else
+      % gray
+      \def\colorrgb#1{\color{black}}%
+      \def\colorgray#1{\color[gray]{#1}}%
+      \expandafter\def\csname LTw\endcsname{\color{white}}%
+      \expandafter\def\csname LTb\endcsname{\color{black}}%
+      \expandafter\def\csname LTa\endcsname{\color{black}}%
+      \expandafter\def\csname LT0\endcsname{\color{black}}%
+      \expandafter\def\csname LT1\endcsname{\color{black}}%
+      \expandafter\def\csname LT2\endcsname{\color{black}}%
+      \expandafter\def\csname LT3\endcsname{\color{black}}%
+      \expandafter\def\csname LT4\endcsname{\color{black}}%
+      \expandafter\def\csname LT5\endcsname{\color{black}}%
+      \expandafter\def\csname LT6\endcsname{\color{black}}%
+      \expandafter\def\csname LT7\endcsname{\color{black}}%
+      \expandafter\def\csname LT8\endcsname{\color{black}}%
+    \fi
+  \fi
+    \setlength{\unitlength}{0.0500bp}%
+    \ifx\gptboxheight\undefined%
+      \newlength{\gptboxheight}%
+      \newlength{\gptboxwidth}%
+      \newsavebox{\gptboxtext}%
+    \fi%
+    \setlength{\fboxrule}{0.5pt}%
+    \setlength{\fboxsep}{1pt}%
+    \definecolor{tbcol}{rgb}{1,1,1}%
+\begin{picture}(7200.00,4320.00)%
+    \gplgaddtomacro\gplbacktext{%
+      \csname LTb\endcsname%%
+      \put(539,392){\makebox(0,0)[r]{\strut{}$-2$}}%
+      \csname LTb\endcsname%%
+      \put(539,807){\makebox(0,0)[r]{\strut{}$-1.5$}}%
+      \csname LTb\endcsname%%
+      \put(539,1222){\makebox(0,0)[r]{\strut{}$-1$}}%
+      \csname LTb\endcsname%%
+      \put(539,1637){\makebox(0,0)[r]{\strut{}$-0.5$}}%
+      \csname LTb\endcsname%%
+      \put(539,2052){\makebox(0,0)[r]{\strut{}$0$}}%
+      \csname LTb\endcsname%%
+      \put(539,2466){\makebox(0,0)[r]{\strut{}$0.5$}}%
+      \csname LTb\endcsname%%
+      \put(539,2881){\makebox(0,0)[r]{\strut{}$1$}}%
+      \csname LTb\endcsname%%
+      \put(539,3296){\makebox(0,0)[r]{\strut{}$1.5$}}%
+      \csname LTb\endcsname%%
+      \put(539,3711){\makebox(0,0)[r]{\strut{}$2$}}%
+      \csname LTb\endcsname%%
+      \put(637,196){\makebox(0,0){\strut{}$-10$}}%
+      \csname LTb\endcsname%%
+      \put(2199,196){\makebox(0,0){\strut{}$-5$}}%
+      \csname LTb\endcsname%%
+      \put(3761,196){\makebox(0,0){\strut{}$0$}}%
+      \csname LTb\endcsname%%
+      \put(5323,196){\makebox(0,0){\strut{}$5$}}%
+      \csname LTb\endcsname%%
+      \put(6885,196){\makebox(0,0){\strut{}$10$}}%
+    }%
+    \gplgaddtomacro\gplfronttext{%
+      \csname LTb\endcsname%%
+      \put(6121,3535){\makebox(0,0)[r]{\strut{}$(x/4)**2$}}%
+      \csname LTb\endcsname%%
+      \put(6121,3339){\makebox(0,0)[r]{\strut{}$sin(x)$}}%
+      \csname LTb\endcsname%%
+      \put(6121,3143){\makebox(0,0)[r]{\strut{}$1/x$}}%
+      \csname LTb\endcsname%%
+      \put(3761,4005){\makebox(0,0){\strut{}Some Math Functions}}%
+    }%
+    \gplbacktext
+    \put(0,0){\includegraphics[width={360.00bp},height={216.00bp}]{gunplot_plot}}%
+    \gplfronttext
+  \end{picture}%
+\endgroup
diff --git a/Doku/screenshot/dia.jpg b/Doku/screenshot/dia.jpg
deleted file mode 100644
index 403bfe9fbda3cca3e7b330ec86eed572f7a52279..0000000000000000000000000000000000000000
Binary files a/Doku/screenshot/dia.jpg and /dev/null differ
diff --git a/Doku/screenshot/dia.png b/Doku/screenshot/dia.png
new file mode 100644
index 0000000000000000000000000000000000000000..47129361cd9d61cf227582840d1d1a4079de9793
Binary files /dev/null and b/Doku/screenshot/dia.png differ
diff --git a/Doku/screenshot/firefox.jpg b/Doku/screenshot/firefox.jpg
deleted file mode 100644
index cdeba59d97942e4787d8aff570a1e8f00abdadf4..0000000000000000000000000000000000000000
Binary files a/Doku/screenshot/firefox.jpg and /dev/null differ
diff --git a/Doku/screenshot/firefox.png b/Doku/screenshot/firefox.png
new file mode 100644
index 0000000000000000000000000000000000000000..ba9f5355bfe4dcafee519e3bf41723a5fa98f59d
Binary files /dev/null and b/Doku/screenshot/firefox.png differ
diff --git a/Doku/screenshot/gufw.jpg b/Doku/screenshot/gufw.jpg
deleted file mode 100644
index e67438e2a89d2128af57e5ccb9a2197abdf44928..0000000000000000000000000000000000000000
Binary files a/Doku/screenshot/gufw.jpg and /dev/null differ
diff --git a/Doku/screenshot/gufw.png b/Doku/screenshot/gufw.png
new file mode 100644
index 0000000000000000000000000000000000000000..af8a88cdf9d576d4b77e9010e30645b09734c3ef
Binary files /dev/null and b/Doku/screenshot/gufw.png differ
diff --git a/Doku/screenshot/inkscape.jpg b/Doku/screenshot/inkscape.jpg
deleted file mode 100644
index 4911f1297d99daefc53f651f95d068f2dcb935bd..0000000000000000000000000000000000000000
Binary files a/Doku/screenshot/inkscape.jpg and /dev/null differ
diff --git a/Doku/screenshot/inkscape.png b/Doku/screenshot/inkscape.png
new file mode 100644
index 0000000000000000000000000000000000000000..13a1447e6d02bcaedaf599500c029f2351a47ab5
Binary files /dev/null and b/Doku/screenshot/inkscape.png differ
diff --git a/Doku/screenshot/kile.png b/Doku/screenshot/kile.png
index 00371eedf333b67553175e0244b4e0c22e4f14c7..c50ab49fbd782e0f6b1c32701e3fdc7425017883 100644
Binary files a/Doku/screenshot/kile.png and b/Doku/screenshot/kile.png differ
diff --git a/Doku/screenshot/texstudio.jpg b/Doku/screenshot/texstudio.jpg
deleted file mode 100644
index c874a8663df3265f780faf3cbb682a07da8083a2..0000000000000000000000000000000000000000
Binary files a/Doku/screenshot/texstudio.jpg and /dev/null differ
diff --git a/Doku/screenshot/texstudio.png b/Doku/screenshot/texstudio.png
new file mode 100644
index 0000000000000000000000000000000000000000..b32f34fdfcc0e065b0c0de99218a30bda5f42daa
Binary files /dev/null and b/Doku/screenshot/texstudio.png differ
diff --git a/Doku/screenshot/thunderbird.jpg b/Doku/screenshot/thunderbird.jpg
deleted file mode 100644
index a6b0a1225816b87b961368aad42bad9f5290f328..0000000000000000000000000000000000000000
Binary files a/Doku/screenshot/thunderbird.jpg and /dev/null differ
diff --git a/Doku/screenshot/thunderbird.png b/Doku/screenshot/thunderbird.png
new file mode 100644
index 0000000000000000000000000000000000000000..ed74049a2cf500229314eb8e2f7fc9ae42c4e6d9
Binary files /dev/null and b/Doku/screenshot/thunderbird.png differ
diff --git a/Doku/thunderbird.tex b/Doku/thunderbird.tex
index 7132270cdd59e9e65ad0216c88c99774d4c3db76..267032db0df14e46e79c33b2918f460842900db6 100644
--- a/Doku/thunderbird.tex
+++ b/Doku/thunderbird.tex
@@ -4,4 +4,6 @@
 Thunderbird ist dein Standardmailprogramm, damit kannst du beispielsweise deine RWTH-Mails abrufen.
 Eine Anleitung, wie du Thunderbird einrichtest findest du unter
 
-\scalebox{0.9}{\url{https://doc.itc.rwth-aachen.de/display/EML/Thunderbird+14+bis+Thunderbird+45}}
+\scalebox{0.9}{\url{https://help.itc.rwth-aachen.de/en/service/1jefzdccuvuch/article/614566f01671435d9f0e267e49aeae54/}}
+
+Inbesondere sollte darauf geachtet werden, dass Benutzername gegenüber dem server das Kürzel (z.B. \texttt{ab123456@rwth-aachen.de}), die E-Mail-Addresse hingegen der Name (z.B. \texttt{vorname.nachname@rwth-aachen.de} oder \texttt{vorname.nachname1@rwth-aachen.de} falls es den Namen schon gab). Wenn das Kürzel als e-Mail-Addresse genutzt wird, erlaubt der RWTH-Mailserver euch nicht Mails zu verschicken.
diff --git a/Doku/valgrind.tex b/Doku/valgrind.tex
index e3e9f9670b136a3f1de05b8421677d1794cb73cf..ac17097e3b5a83713323cfbc608969fdfbdbe11e 100644
--- a/Doku/valgrind.tex
+++ b/Doku/valgrind.tex
@@ -1,5 +1,6 @@
 \subsection{Valgrind}
 Valgrind ist ein Werkzeug zum Debuggen von compilierten Programmen, insbesondere von Speicherfehlern.
 Wenn man beispielsweise ein C oder C++-Programm geschrieben hat, kann man es mit Flags zum Debuggen (\texttt{-g} bei gcc und g++) kompilieren und danach mit \texttt{valgrind a.out} ausführen.
+Valgrind bietet darüber hinaus Auswertungswerkzeuge, die bei der Programmoptimierung helfen, wie das dynamic heap analysis tool DHAT\footnote{siehe \url{https://valgrind.org/docs/manual/dh-manual.html}}.
 
-Weitere Informationen findet man in der Manpage \texttt{man valgrind}.
+Weitere Informationen findet man in der Manpage \texttt{man valgrind} oder Online auf \url{https://valgrind.org/docs/manual/}.
diff --git a/scripts/linuxparty.sh b/scripts/linuxparty.sh
index 9d4b050e43f91b73944a8a1aec49b2cadc82b6fe..b5004be1109bbe224788bb59992c90544b20c31d 100755
--- a/scripts/linuxparty.sh
+++ b/scripts/linuxparty.sh
@@ -448,10 +448,11 @@ echo "Installiere Standard-Programme"
 apt-get ${APT_SOURCE_ARG} install ${APT_ARGS} $(grep '^[^|#]*D[^|]*|' "$MY_DIR/../packages" | cut -d'|' -f 2)
 
 # System absichern
-if askyesno "Netzwerk: Soll die Ubuntu Firewall (ufw/gufw) aktiviert werden ?"
-then
-  $DEBUG ufw enable
-fi
+# ufw kann in kubuntu 22.04 nicht mehr aus der Live-umgebung gesetzt werden, wegen fehlender netfilter kernel module im kernel
+#if askyesno "Netzwerk: Soll die Ubuntu Firewall (ufw/gufw) aktiviert werden ?"
+#then
+#  $DEBUG ufw enable
+#fi
 
 echo "Installation:"
 echo "Programme, die für alle Fachrichtungen interessant sind (7zip, gimp, git, ... )"